Real Analysis in Computer Science: A collection of Open Problems

We list a collection of open problems in real analysis in computer science, which complements, updates and extends a previous list curated by Ryan O’Donnell (2012). The object of study in these problems are boolean functions f :f0; 1g n !f0; 1g, and their analytic and combinatorial properties. Many of the questions originate from in theoretical computer science or the theory of voting. The formulation of many of the questions has a strong combinatorial and analytical avor including the use of the discrete Fourier expansion.

[1]  Hamed Hatami A structure theorem for Boolean functions with small total influences , 2010, 1008.1021.

[2]  Dvir Falik,et al.  Edge-Isoperimetric Inequalities and Influences , 2007, Comb. Probab. Comput..

[3]  M. Talagrand A conjecture on convolution operators, and a non-Dunford-Pettis operator onL1 , 1989 .

[4]  Shachar Lovett,et al.  Inverse conjecture for the gowers norm is false , 2007, Theory Comput..

[5]  Elchanan Mossel,et al.  Noise correlation bounds for uniform low degree functions , 2009, 0904.0157.

[6]  Prahladh Harsha,et al.  An invariance principle for polytopes , 2009, JACM.

[7]  Asaf Shapira Green's conjecture and testing linear-invariant properties , 2009, STOC '09.

[8]  Yuval Filmus,et al.  A quasi-stability result for low-degree Boolean functions on Sn , 2012 .

[9]  Jacob Fox,et al.  A new proof of the graph removal lemma , 2010, ArXiv.

[10]  Subhash Khot,et al.  Sharp kernel clustering algorithms and their associated Grothendieck inequalities , 2009, SODA '10.

[11]  J. Meigs,et al.  WHO Technical Report , 1954, The Yale Journal of Biology and Medicine.

[12]  David Ellis,et al.  A stability result for balanced dictatorships in Sn , 2012, Random Struct. Algorithms.

[13]  Yishay Mansour,et al.  Learning Boolean Functions via the Fourier Transform , 1994 .

[14]  Howard Straubing,et al.  Non-Uniform Automata Over Groups , 1990, Inf. Comput..

[15]  Mark Braverman,et al.  The Grothendieck Constant is Strictly Smaller than Krivine's Bound , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[16]  Ehud Friedgut,et al.  On the measure of intersecting families, uniqueness and stability , 2008, Comb..

[17]  Madhu Sudan,et al.  Algebraic property testing: the role of invariance , 2008, Electron. Colloquium Comput. Complex..

[18]  Amit Chakrabarti,et al.  An Optimal Lower Bound on the Communication Complexity of Gap-Hamming-Distance , 2012, SIAM J. Comput..

[19]  Ronen Eldan A two-sided estimate for the Gaussian noise stability deficit , 2013, 1307.2781.

[20]  Ehud Friedgut,et al.  Boolean Functions With Low Average Sensitivity Depend On Few Coordinates , 1998, Comb..

[21]  T. Sanders On the Bogolyubov–Ruzsa lemma , 2010, 1011.0107.

[22]  Ryan O'Donnell Open Problems in Analysis of Boolean Functions , 2022 .

[23]  Daniel M. Kane,et al.  Bounded Independence Fools Degree-2 Threshold Functions , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[24]  E. Friedgut,et al.  Sharp thresholds of graph properties, and the -sat problem , 1999 .

[25]  Nathan Linial,et al.  The influence of variables on Boolean functions , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[26]  A. Burchard,et al.  Comparison theorems for exit times , 2001 .

[27]  J. Robert Johnson,et al.  Vertex Turán problems in the hypercube , 2010, J. Comb. Theory, Ser. A.

[28]  C. Borell Geometric bounds on the Ornstein-Uhlenbeck velocity process , 1985 .

[29]  Ryan O'Donnell,et al.  Gaussian noise sensitivity and Fourier tails , 2012, 2012 IEEE 27th Conference on Computational Complexity.

[30]  J. Bourgain Estimation of certain exponential sums arising in complexity theory , 2005 .

[31]  Andris Ambainis,et al.  The Need for Structure in Quantum Speedups , 2009, Theory Comput..

[32]  Nathan Linial,et al.  The Equivalence of Two Problems on the Cube , 1992, J. Comb. Theory, Ser. A.

[33]  Michel Talagrand Constructions of majorizing measures Bernoulli processes and cotype , 1994 .

[34]  Elchanan Mossel,et al.  Strong Contraction and Influences in Tail Spaces , 2014, ArXiv.

[35]  Antje Baer Theoretical Advances In Neural Computation And Learning , 2016 .

[36]  Terence Tao,et al.  Multiple Recurrence in Quasirandom Groups , 2012 .

[37]  Ryan O'Donnell,et al.  Noise stability of functions with low influences: Invariance and optimality , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[38]  Ryan O'Donnell,et al.  Analysis of Boolean Functions , 2014, ArXiv.

[39]  Y. Peres Noise Stability of Weighted Majority , 2004, math/0412377.

[40]  Rocco A. Servedio,et al.  Bounded Independence Fools Halfspaces , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[41]  Yi Wu,et al.  Optimal Lower Bounds for Locality-Sensitive Hashing (Except When q is Tiny) , 2014, TOCT.

[42]  Tobias Holck Colding,et al.  The round sphere minimizes entropy among closed self-shrinkers , 2012, 1205.2043.

[43]  Guy Kindler,et al.  Optimal inapproximability results for MAX-CUT and other 2-variable CSPs? , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[44]  Ke Yang,et al.  On the (im)possibility of non-interactive correlation distillation , 2004, Theor. Comput. Sci..

[45]  Elchanan Mossel,et al.  Robust Optimality of Gaussian Noise Stability , 2012, 1210.4126.

[46]  Asaf Shapira,et al.  A Unified Framework for Testing Linear-Invariant Properties , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[47]  Ehud Friedgut,et al.  Influences in Product Spaces: KKL and BKKKL Revisited , 2004, Combinatorics, Probability and Computing.

[48]  W. T. Gowers,et al.  Quasirandom Groups , 2007, Combinatorics, Probability and Computing.

[49]  William McClain,et al.  On an Argument of Shkredov on Two-Dimensional Corners , 2005 .

[50]  Ryan O'Donnell,et al.  Learning Monotone Decision Trees in Polynomial Time , 2007, SIAM J. Comput..

[51]  Emanuele Viola,et al.  Norms, XOR Lemmas, and Lower Bounds for Polynomials and Protocols , 2008, Theory Comput..

[52]  G. Kalai,et al.  Every monotone graph property has a sharp threshold , 1996 .

[53]  Avi Wigderson,et al.  Deterministic simulation of probabilistic constant depth circuits , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[54]  Nathan Linial,et al.  Spectral properties of threshold functions , 1994, Comb..

[55]  H. Buhrman,et al.  Complexity measures and decision tree complexity: a survey , 2002, Theor. Comput. Sci..

[56]  Ben Green,et al.  Finite field models in additive combinatories , 2004, BCC.

[57]  Noam Nisan,et al.  On the degree of boolean functions as real polynomials , 1992, STOC '92.

[58]  Yishay Mansour,et al.  An O(nlog log n) learning algorithm for DNF under the uniform distribution , 1992, COLT '92.

[59]  Denis Thérien,et al.  Non-Uniform Automata Over Groups , 1987, Inf. Comput..

[60]  B. Green A Szemerédi-type regularity lemma in abelian groups, with applications , 2003, math/0310476.

[61]  Daniel M. Kane,et al.  The correct exponent for the Gotsman–Linial Conjecture , 2012, 2013 IEEE Conference on Computational Complexity.

[62]  Elchanan Mossel,et al.  Standard simplices and pluralities are not the most noise stable , 2014, ITCS.

[63]  Shachar Lovett,et al.  Correlation testing for affine invariant properties on Fpn in the high error regime , 2011, STOC '11.

[64]  Ryan O'Donnell,et al.  Learning monotone decision trees in polynomial time , 2006, 21st Annual IEEE Conference on Computational Complexity (CCC'06).

[65]  Ryan O'Donnell,et al.  Every decision tree has an influential variable , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[66]  Noam Nisan,et al.  Multiparty Protocols, Pseudorandom Generators for Logspace, and Time-Space Trade-Offs , 1992, J. Comput. Syst. Sci..

[67]  K. Ball,et al.  L 1 -SMOOTHING FOR THE ORNSTEIN–UHLENBECK SEMIGROUP. , 2013 .

[68]  Rocco A. Servedio,et al.  Learning intersections and thresholds of halfspaces , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[69]  Shachar Lovett,et al.  Testing Low Complexity Affine-Invariant Properties , 2013, SODA.

[70]  Elchanan Mossel Gaussian Bounds for Noise Correlation of Functions , 2007, FOCS 2007.

[71]  Roman Smolensky,et al.  Algebraic methods in the theory of lower bounds for Boolean circuit complexity , 1987, STOC.

[72]  Rocco A. Servedio,et al.  Bounded Independence Fools Halfspaces , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[73]  Franck Barthe An Isoperimetric Result for the Gaussian Measure and Unconditional Sets , 2001 .

[74]  Daniel M. Kane The Gaussian Surface Area and Noise Sensitivity of Degree-d Polynomial Threshold Functions , 2010, 2010 IEEE 25th Annual Conference on Computational Complexity.

[75]  Ryan O'Donnell,et al.  A new point of NP-hardness for unique games , 2012, STOC '12.

[76]  Richard K. Guy,et al.  Any Answers Anent These Analytical Enigmas , 1986 .

[77]  Ilya D. Shkredov,et al.  On a problem of Gowers , 2006 .

[78]  T. Sanders,et al.  Analysis of Boolean Functions , 2012, ArXiv.

[79]  I. Benjamini,et al.  Noise sensitivity of Boolean functions and applications to percolation , 1998 .

[80]  Ryan O'Donnell,et al.  On the Fourier tails of bounded functions over the discrete cube , 2006, STOC '06.

[81]  R. Latala,et al.  On the boundedness of Bernoulli processes , 2013, 1305.4292.

[82]  Zoltán Füredi,et al.  On induced subgraphs of the cube , 1988, J. Comb. Theory A.

[83]  Ron Holzman,et al.  On the product of sign vectors and unit vectors , 1992, Comb..

[84]  Ben Green,et al.  Freiman's Theorem in Finite Fields via Extremal Set Theory , 2009, Comb. Probab. Comput..

[85]  Mohammad Bavarian,et al.  On the Sum of L1 Influences , 2013, 2014 IEEE 29th Conference on Computational Complexity (CCC).

[86]  Jeff Kahn,et al.  Thresholds and Expectation Thresholds , 2007, Comb. Probab. Comput..

[87]  Daniel M. Kane The average sensitivity of an intersection of half spaces , 2014, STOC.

[88]  Andrew Wan,et al.  Mansour's Conjecture is True for Random DNF Formulas , 2010, COLT.

[89]  Daniel M. Kane A Small PRG for Polynomial Threshold Functions of Gaussians , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[90]  R. Lathe Phd by thesis , 1988, Nature.

[91]  P. Diaconis,et al.  Generating a random permutation with random transpositions , 1981 .

[92]  Subhash Khot,et al.  Approximate Kernel Clustering , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[93]  NORIHIDE TOKUSHIGE Intersecting Families — Uniform versus Weighted , 2011 .

[94]  Yuval Filmus,et al.  A quasi-stability result for dictatorships in Sn , 2012, Comb..

[95]  Ryan O'Donnell,et al.  Coin flipping from a cosmic source: On error correction of truly random bits , 2004, Random Struct. Algorithms.

[96]  Imre Z. Ruzsa,et al.  An analog of Freiman's theorem in groups , 1993 .

[97]  Madhur Tulsiani,et al.  Improved Pseudorandom Generators for Depth 2 Circuits , 2010, APPROX-RANDOM.

[98]  Ben Green,et al.  The distribution of polynomials over finite fields, with applications to the Gowers norms , 2007, Contributions Discret. Math..

[99]  N. Linial,et al.  The influence of variables in product spaces , 1992 .

[100]  Prasad Raghavendra,et al.  Average Sensitivity and Noise Sensitivity of Polynomial Threshold Functions , 2009, SIAM J. Comput..

[101]  Elchanan Mossel,et al.  Maximally stable Gaussian partitions with discrete applications , 2009, 0903.3362.

[102]  Tom Sanders,et al.  Green's sumset problem at density one half , 2010, 1003.5649.

[103]  Yuval Filmus,et al.  Triangle-intersecting Families of Graphs , 2010 .

[104]  Béla Bollobás,et al.  Daisies and Other Turán Problems , 2011, Combinatorics, Probability and Computing.

[105]  Madhur Tulsiani,et al.  An Arithmetic Analogue of Fox's Triangle Removal Argument , 2013, ArXiv.

[106]  Miklos Santha,et al.  Improved bounds for the randomized decision tree Complexity of recursive majority , 2010, Random Struct. Algorithms.

[107]  Daniel M. Kane The Gaussian Surface Area and Noise Sensitivity of Degree-d Polynomial Threshold Functions , 2010, Computational Complexity Conference.

[108]  D. Král,et al.  A removal lemma for systems of linear equations over finite fields , 2008, 0809.1846.

[109]  Arnab Bhattacharyya,et al.  Lower bounds for testing triangle-freeness in Boolean functions , 2010, SODA '10.

[110]  Daniel Král,et al.  A combinatorial proof of the Removal Lemma for Groups , 2008, J. Comb. Theory, Ser. A.

[111]  Steven Heilman Euclidean Partitions that Optimize an Ornstein-Uhlenbeck Quadratic Form , 2012 .

[112]  Howard Straubing,et al.  Bounds on an exponential sum arising in Boolean circuit complexity , 2005 .