Formalizing Integration Theory with an Application to Probabilistic Algorithms
暂无分享,去创建一个
[1] Joe Hurd,et al. Formal verification of probabilistic algorithms , 2003 .
[2] M. Gordon,et al. Introduction to HOL: a theorem proving environment for higher order logic , 1993 .
[3] Rajeev Motwani,et al. Randomized algorithms , 1996, CSUR.
[4] Heinz Bauer,et al. Maß- und Integrationstheorie , 1992 .
[5] Robin Milner,et al. A Theory of Type Polymorphism in Programming , 1978, J. Comput. Syst. Sci..
[6] Lawrence Charles Paulson,et al. ML for the working programmer , 1991 .
[7] Noboru Endou. Definitions and Basic Properties of Measurable Functions , 2004 .
[8] J. Harrison. Formalized Mathematics , 1996 .
[9] Patrick Billingsley,et al. Probability and Measure. , 1986 .
[10] David Williams,et al. Probability with Martingales , 1991, Cambridge mathematical textbooks.
[11] John Robert Harrison,et al. Theorem proving with the real numbers , 1998, CPHC/BCS distinguished dissertations.
[12] Markus Wenzel,et al. Isabelle, Isar - a versatile environment for human readable formal proof documents , 2002 .
[13] R. Gandy. The Simple Theory of Types , 1977 .
[14] Lawrence Charles Paulson,et al. Isabelle/HOL: A Proof Assistant for Higher-Order Logic , 2002 .
[15] Tobias Nipkow,et al. Order-sorted polymorphism in Isabelle , 1993 .
[16] Andrzej Trybulec,et al. Computer Assisted Reasoning with MIZAR , 1985, IJCAI.
[17] Noboru Endou. The Measurability of Extended Real Valued Functions , 2000 .
[18] M. Wenzel. Using Axiomatic Type Classes in Isabelle , 2000 .
[19] A. Kondracki. Basic Properties of Rational Numbers , 1990 .
[20] MA John Harrison PhD. Theorem Proving with the Real Numbers , 1998, Distinguished Dissertations.
[21] Lawrence C. Paulson,et al. Isabelle: The Next 700 Theorem Provers , 2000, ArXiv.
[22] Jacques D. Fleuriot,et al. Mechanizing Nonstandard Real Analysis , 2000 .
[23] Lawrence Charles Paulson,et al. Isabelle: A Generic Theorem Prover , 1994 .