Configuring a machining operation as a Constraint Satisfaction Problem

The problem of configuring a machining operation is complex (many parameters and many interactions between parameters) and is generally achieved thanks to expert heuristic knowledge. Indeed, the configuration of a machining operation is often carried out according to a specific procedure: choice of a kind of operation and of a kind of machine, then choice of a set of tools and at the end selection of cutting conditions. We propose in this paper a general framework for the configuration of a machining operation based on a constraint representation and manipulation. We first present a model of the decision variables (such as the machine, the tool, the insert or the feed rate), the non-decision variable and the constraints between variables. An overview of the 32 identified constraints is given in the paper. Even though it is not exhaustive, the basic constraints of the domain are represented. A typology of the constraints to be manipulated is then given leading order to a specification of algorithms for search and consistency checking that may allow to manage these kinds of constraints.