MoS2-Titanium Contact Interface Reactions.

The formation of the Ti-MoS2 interface, which is heavily utilized in nanoelectronic device research, is studied by X-ray photoelectron spectroscopy. It is found that, if deposition under high vacuum (∼1 × 10(-6) mbar) as opposed to ultrahigh vacuum (∼1 × 10(-9) mbar) conditions are used, TiO2 forms at the interface rather than Ti. The high vacuum deposition results in an interface free of any detectable reaction between the semiconductor and the deposited contact. In contrast, when metallic titanium is successfully deposited by carrying out depositions in ultrahigh vacuum, the titanium reacts with MoS2 forming Ti(x)S(y) and metallic Mo at the interface. These results have far reaching implications as many prior studies assuming Ti contacts may have actually used TiO2 due to the nature of the deposition tools used.

[1]  R. Wallace,et al.  The unusual mechanism of partial Fermi level pinning at metal-MoS2 interfaces. , 2014, Nano letters.

[2]  Measurement of Schottky barrier height tuning using dielectric dipole insertion method at metal–semiconductor interfaces by photoelectron spectroscopy and electrical characterization techniques , 2013 .

[3]  C. Battaglia,et al.  Hole contacts on transition metal dichalcogenides: interface chemistry and band alignments. , 2014, ACS nano.

[4]  Lee,et al.  Thermal conductivity of sputtered oxide films. , 1995, Physical review. B, Condensed matter.

[5]  Stephen McDonnell,et al.  Defect-dominated doping and contact resistance in MoS2. , 2014, ACS nano.

[6]  Min Sup Choi,et al.  Metal-Semiconductor Barrier Modulation for High Photoresponse in Transition Metal Dichalcogenide Field Effect Transistors , 2014, Scientific Reports.

[7]  Sebastian Doniach,et al.  Many-electron singularity in X-ray photoemission and X-ray line spectra from metals , 1970 .

[8]  R. Wallace,et al.  The effect of graphite surface condition on the composition of Al2O3 by atomic layer deposition , 2010 .

[9]  Moon J. Kim,et al.  Dielectric dipole mitigated Schottky barrier height tuning using atomic layer deposited aluminum oxide for contact resistance reduction , 2011 .

[10]  Brian M. Foley,et al.  Influence of interfacial properties on thermal transport at gold:silicon contacts , 2012 .

[11]  Wei Liu,et al.  A computational study of metal-contacts to beyond-graphene 2D semiconductor materials , 2012, 2012 International Electron Devices Meeting.

[12]  R. Wallace In-Situ Studies of Interfacial Bonding of High-k Dielectrics for CMOS Beyond 22nm , 2008 .

[13]  M. Perego,et al.  Energy band alignment at TiO2∕Si interface with various interlayers , 2008 .

[14]  Y. Chabal,et al.  Selectivity of metal oxide atomic layer deposition on hydrogen terminated and oxidized Si(001)-(2×1) surface , 2014 .

[15]  P. Ye,et al.  Channel length scaling of MoS2 MOSFETs. , 2012, ACS nano.

[16]  Lince,et al.  Schottky-barrier formation on a covalent semiconductor without Fermi-level pinning: The metal-MoS2(0001) interface. , 1987, Physical review. B, Condensed matter.

[17]  J. Robertson Band offsets of wide-band-gap oxides and implications for future electronic devices , 2000 .

[18]  J. Su,et al.  Tuning the electronic properties of Ti-MoS2 contacts through introducing vacancies in monolayer MoS2. , 2015, Physical chemistry chemical physics : PCCP.

[19]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[20]  Eric Pop,et al.  Improving contact resistance in MoS2 field effect transistors , 2014, 72nd Device Research Conference.

[21]  Woong Choi,et al.  Variability of electrical contact properties in multilayer MoS2 thin-film transistors , 2014 .

[22]  C. Faulkner,et al.  A new route to zero-barrier metal source/drain MOSFETs , 2004, IEEE Transactions on Nanotechnology.

[23]  J. R. Lince,et al.  Soft X-Ray Photoelectron Spectroscopy Study of the Interaction of Cr with MoS2(0001) , 1994 .

[24]  Brian F. Donovan,et al.  Thermal boundary conductance accumulation and interfacial phonon transmission: Measurements and theory , 2015 .

[25]  A. Herrera‐Gomez,et al.  Chemical depth profile of ultrathin nitrided SiO2 films , 2002 .

[26]  Patrick E. Hopkins,et al.  Effects of surface roughness and oxide layer on the thermal boundary conductance at aluminum/silicon interfaces , 2010 .

[27]  Kaustav Banerjee,et al.  Electrical contacts to two-dimensional semiconductors. , 2015, Nature materials.

[28]  K. Saraswat,et al.  Increase in current density for metal contacts to n-germanium by inserting TiO2 interfacial layer to reduce Schottky barrier height , 2011 .

[29]  J. Y. Kwak,et al.  Electrical characteristics of multilayer MoS2 FET's with MoS2/graphene heterojunction contacts. , 2014, Nano letters.

[30]  Inoue,et al.  X-ray photoemission and Auger-electron spectroscopic study of the electronic structure of intercalation compounds MxTiS2 (M=Mn, Fe, Co, and Ni). , 1988, Physical review. B, Condensed matter.

[31]  Mengwei Si,et al.  Switching mechanism in single-layer molybdenum disulfide transistors: an insight into current flow across Schottky barriers. , 2014, ACS nano.

[32]  C. Wagner Handbook of x-ray photoelectron spectroscopy : a reference book of standard data for use in x-ray photoelectron spectroscopy , 1979 .

[33]  D. Eastman,et al.  PHOTOELECTRIC WORK FUNCTIONS OF TRANSITION, RARE-EARTH, AND NOBLE METALS. , 1970 .

[34]  J. McGilp,et al.  Soft X-ray photoemission spectroscopy of metal-molybdenum bisulphide interfaces , 1985 .

[35]  Ning Lu,et al.  HfO(2) on MoS(2) by atomic layer deposition: adsorption mechanisms and thickness scalability. , 2013, ACS nano.

[36]  Luigi Colombo,et al.  Impurities and Electronic Property Variations of Natural MoS2 Crystal Surfaces. , 2015, ACS nano.

[37]  R. Jammy,et al.  CMOS band-edge schottky barrier heights using dielectric-dipole mitigated (DDM) metal/Si for source/drain contact resistance reduction , 2006, 2009 Symposium on VLSI Technology.

[38]  H. Michaelson The work function of the elements and its periodicity , 1977 .

[39]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[40]  R. Wallace,et al.  Surface Defects on Natural MoS2. , 2015, ACS applied materials & interfaces.

[41]  Matthew R. Shaner,et al.  Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation , 2014, Science.