Heat utilisation technologies: A critical review of heat pipes

In electrical or thermal appliances, heat (thermal energy) must either be added into or removed from a system to maintain operational stability. Heat pipes can enhance the heat transfer capabilities without needing a significant temperature gradient between heat sources and heat sinks. The effectiveness of heat pipes is due to the latent heat of phase change of the working fluid within (i) condensation and (ii) evaporation stages. The latent heat of phase change greatly exceeds the sensible heat capacity. Heat pipes may rely on gravity, wicks, centrifugal force or in some cases even a magnetic field to help return condensate flow from the condenser to the evaporator. Wicks in heat pipes are classified into three groups: sintered, groove and mesh types. This review attempts to cover various types of heat pipes such as thermal diodes, variable conductance, pulsating, etc. The application of nanotechnology in heat pipes can be separated into two groups: nanoparticles and nanobubbles, with the latter receiving considerably less attention than the former. The hybridisation of heat pipe technology is also possible and has been discussed along with its future research potential.

[1]  Harold J W Zandvliet,et al.  Knudsen gas provides nanobubble stability. , 2011, Physical review letters.

[2]  Yat Huang Yau,et al.  Comparative study on evaporator heat transfer characteristics of revolving heat pipes filled with R134a, R22 and R410A , 2011 .

[3]  Brian M. Holley,et al.  Analysis of pulsating heat pipe with capillary wick and varying channel diameter , 2005 .

[4]  N. Koratkar,et al.  Nanostructured copper interfaces for enhanced boiling. , 2008, Small.

[5]  Yew Mun Hung,et al.  Effects of geometric design on thermal performance of star-groove micro-heat pipes , 2011 .

[6]  B. V. Kosoy,et al.  Refrigerating heat pipes , 2001 .

[7]  M. A. Chernysheva,et al.  3D-model for heat and mass transfer simulation in flat evaporator of copper-water loop heat pipe , 2012 .

[8]  Manfred Groll,et al.  Closed loop pulsating heat pipes Part B: visualization and semi-empirical modeling , 2003 .

[9]  Wukchul Joung,et al.  Experimental study on the operating characteristics of a flat bifacial evaporator loop heat pipe , 2010 .

[10]  Chih-Chung Chang,et al.  Heat pipe with PCM for electronic cooling , 2011 .

[11]  Holger Löwe,et al.  Heat Pipe‐Cooled Microstructured Reactor Concept for Highly Exothermal Ionic Liquid Syntheses , 2010 .

[12]  Hussam Jouhara,et al.  Economic assessment of the benefits of wraparound heat pipes in ventilation processes for hot and humid climates , 2009 .

[13]  K. Sreekumar,et al.  Studies on the processing of nickel base porous wicks for capillary pumped loop for thermal management of spacecrafts , 2010 .

[14]  Ravi Kumar,et al.  Condensation heat transfer of R-134a inside a microfin tube with different tube inclinations , 2007 .

[15]  Yury F. Maydanik,et al.  DEVELOPMENT AND INVESTIGATION OF COPPER-WATER LOOP HEAT PIPES WITH HIGH OPERATING CHARACTERISTICS , 2010 .

[16]  L. Vasiliev,et al.  Sorption heat pipe—a new thermal control device for space and ground application , 2005 .

[17]  Kazunari Ohgaki,et al.  Physicochemical approach to nanobubble solutions , 2010 .

[18]  Aliakbar Akbarzadeh,et al.  Effect of Wick Characteristics on the Thermal Performance of the Miniature Loop Heat Pipe , 2009 .

[19]  Amir Faghri,et al.  Flat Miniature Heat Pipes With Micro Capillary Grooves , 1999 .

[20]  Kek-Kiong Tio,et al.  Thermal Analysis of Inclined Micro Heat Pipes , 2006 .

[21]  Amir Faghri,et al.  Critical Heat Fluxes in Flat Miniature Heat Sinks With Micro Capillary Grooves , 1999 .

[22]  Aliakbar Akbarzadeh,et al.  Heat extraction from salinity-gradient solar ponds using heat pipe heat exchangers , 2010 .

[23]  Shwin-Chung Wong,et al.  Evaporation resistance measurement with visualization for sintered copper-powder evaporator in operating flat-plate heat pipes , 2009, 2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference.

[24]  Peter Arthur Kew,et al.  Examination and visualisation of heat transfer processes during evaporation in capillary porous structures , 2002 .

[25]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[26]  Amir Faghri,et al.  Heat transfer in a pulsating heat pipe with open end , 2002 .

[27]  Jocelyn Bonjour,et al.  Parametric analysis of loop heat pipe operation: a literature review , 2007 .

[28]  S. M. Jeter,et al.  Effect of a heat pipe on dehumidification of a controlled air space , 1996 .

[29]  Edson Bazzo,et al.  Manufacturing and microstructural characterization of sintered nickel wicks for capillary pumps , 1999 .

[30]  S. Khandekar THERMOFLUID DYNAMIC STUDY OF FLAT-PLATE CLOSED-LOOP PULSATING HEAT PIPES , 2003 .

[31]  Ivan Catton,et al.  An Experimental Investigation of the Capillary Performance of Triangular Versus Sinusoidal Channels , 1997 .

[32]  Amir Faghri,et al.  Vapor flow analysis of an axially rotating heat pipe , 1993 .

[33]  Guiping Lin,et al.  Experimental investigation of startup behaviors of a dual compensation chamber loop heat pipe with insufficient fluid inventory , 2009 .

[34]  Wei Liu,et al.  Development of biporous wicks for flat-plate loop heat pipe , 2012 .

[35]  Yongping Chen,et al.  Optimization of heat pipe with axial “Ω”-shaped micro grooves based on a niched Pareto genetic algorithm (NPGA) , 2009 .

[36]  Aliakbar Akbarzadeh,et al.  Operational characteristics of the miniature loop heat pipe with non-condensable gases , 2010 .

[37]  Hussam Jouhara,et al.  Experimental investigation of a thermosyphon based heat exchanger used in energy efficient air handling units , 2012 .

[38]  Behrooz M. Ziapour,et al.  Performance analysis of an enhanced thermosyphon Rankine cycle using impulse turbine , 2009 .

[39]  K. S. Ong,et al.  Performance of a R-134a-filled thermosyphon , 2003 .

[40]  Shwin-Chung Wong,et al.  Visualization and performance measurement of operating mesh-wicked heat pipes , 2008 .

[41]  Mohammad Layeghi,et al.  Experimental study of nanofluid effects on the thermal performance with response time of heat pipe , 2012 .

[42]  Qingjun Cai,et al.  Operating Characteristic Investigations in Pulsating Heat Pipe , 2006 .

[43]  Hongbin Ma,et al.  Evaporation heat transfer characteristics of a grooved heat pipe with micro-trapezoidal grooves , 2007 .

[44]  Jinho Lee,et al.  Experimental study on the loop heat pipe with a planar bifacial wick structure , 2008 .

[45]  Shuangfeng Wang,et al.  Study on start-up characteristics of loop heat pipe under low-power , 2011 .

[46]  Shung-Wen Kang,et al.  Experimental investigation of silver nano-fluid on heat pipe thermal performance , 2006 .

[47]  R. Cavicchi,et al.  Bubble nucleation and growth anomaly for a hydrophilic microheater attributed to metastable nanobubbles. , 2007, Physical review letters.

[48]  Guohua Chen,et al.  Experiments on Enhanced Heat Transfer of Self-Exciting Mode Oscillating-Flow Heat Pipe with Non-Uniform Structure , 2010 .

[49]  C. W. Chan,et al.  A review of chemical heat pumps, thermodynamic cycles and thermal energy storage technologies for low grade heat utilisation , 2013 .

[50]  Aliakbar Akbarzadeh,et al.  Operational characteristics of a miniature loop heat pipe with flat evaporator , 2008 .

[51]  Yaxiong Wang,et al.  Evaporation/Boiling in Thin Capillary Wicks (l)—Wick Thickness Effects , 2006 .

[52]  Mehmet Esen,et al.  Experimental investigation of a two-phase closed thermosyphon solar water heater , 2005 .

[53]  Bernard Desmet,et al.  An experimental and analytical study of a variable conductance heat pipe: Application to vehicle thermal management , 2012 .

[54]  Hiroshi Suzuki,et al.  Formulation and analysis of the heat pipe turbine for production of power from renewable sources , 2001 .

[55]  Jinliang Xu,et al.  High speed flow visualization of a closed loop pulsating heat pipe , 2005 .

[56]  Huiying Wu,et al.  Thermal performance comparison of oscillating heat pipes with SiO2/water and Al2O3/water nanofluids , 2011 .

[57]  Ben Richard Hughes,et al.  A review of heat pipe systems for heat recovery and renewable energy applications , 2012 .

[58]  Hongbin Ma,et al.  Theoretical analysis of the maximum heat transport in triangular grooves : A study of idealized micro heat pipes , 1996 .

[59]  Frédéric Lefèvre,et al.  Experimental investigations of flat plate heat pipes with screen meshes or grooves covered with screen meshes as capillary structure , 2012 .

[60]  Jan Christer Eriksson,et al.  The lifetime of a colloid-sized gas bubble in water and the cause of the hydrophobic attraction , 1997 .

[61]  Lin Lu,et al.  Thermal Performance of Axially Microgrooved Heat Pipe Using Carbon Nanotube Suspensions , 2009 .

[62]  R. Kempers,et al.  Effect of number of mesh layers and fluid loading on the performance of screen mesh wicked heat pipes , 2006 .

[63]  Lin Guiping,et al.  Investigation On Startup Behaviors of a Loop Heat Pipe , 2005 .

[64]  Shung-Wen Kang,et al.  Experimental investigation of nanofluids on sintered heat pipe thermal performance , 2009 .

[65]  N. S. Rasor,et al.  K-Max: a material with exceptional heat transfer properties , 1989, Proceedings of the 24th Intersociety Energy Conversion Engineering Conference.

[66]  A. S. Dalkılıç,et al.  Experimental investigation of convective heat transfer coefficient during downward laminar flow condensation of R134a in a vertical smooth tube , 2009 .

[67]  Y. Cao,et al.  Analyses of radially rotating high-temperature heat pipes for turbomachinery applications , 1999 .

[68]  Jinliang Xu,et al.  Chaotic behavior of pulsating heat pipes , 2009 .

[69]  Jun Hu,et al.  Degassing and temperature effects on the formation of nanobubbles at the mica/water interface. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[70]  Giovanni Maria Carlomagno,et al.  Infrared thermography: An optical method in heat transfer and fluid flow visualisation , 2006 .

[71]  Robert Dobson,et al.  Theoretical and experimental modelling of an open oscillatory heat pipe including gravity , 2004 .

[72]  G. Peterson,et al.  Investigation of the transient characteristics of a micro heat pipe , 1991 .

[73]  Dongsoo Jung,et al.  Flow condensation heat transfer coefficients of R22, R134a, R407C, and R410A inside plain and microfin tubes. , 2004 .

[74]  Taïcir Loukil,et al.  The Pareto fitness genetic algorithm: Test function study , 2007, Eur. J. Oper. Res..

[75]  Norbert Hoyer,et al.  Calculation of dryout and post-dryout heat transfer for tube geometry , 1998 .

[76]  A. Franco,et al.  On the use of heat pipe principle for the exploitation of medium–low temperature geothermal resources , 2013 .

[77]  Stéphane Lips,et al.  Physical mechanisms involved in grooved flat heat pipes: Experimental and numerical analyses , 2011 .

[78]  S. Rittidech,et al.  Design and construction of an oven for drying palm bunch using glycerine as fuel together with using closed-loop oscillating heat-pipe with check valves (CLOHP/CV) heat exchanger for waste heat recovery , 2012 .

[79]  S. Rittidech,et al.  Application of a closed-loop oscillating heat pipe with check valves (CLOHP/CV) on performance enhan , 2011 .

[80]  Akira Inoue,et al.  Nucleate pool boiling heat transfer of magnetic fluid in a magnetic field , 1993 .

[81]  Herman Merte,et al.  EVALUATION OF NUCLEATE BOILING HEAT FLUX PREDICTIONS AT VARYING LEVELS OF SUBCOOLING AND ACCELERATION , 1972 .

[82]  Lin Cheng,et al.  Development of sintered Ni-Cu wicks for loop heat pipes , 2009 .

[83]  J. E. Beam,et al.  Experiments and Analyses of Flat Miniature Heat Pipes , 1997 .

[84]  Balram Suman,et al.  An analytical model for fluid flow and heat transfer in a micro-heat pipe of polygonal shape , 2005 .

[85]  C. Ching,et al.  Experimental investigation on the heat transfer characteristics of axial rotating heat pipes , 2004 .

[86]  Ping-Hei Chen,et al.  Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance , 2004 .

[87]  Liu Hui,et al.  Experiments and mechanism analysis of pool boiling heat transfer enhancement with water-based magnetic fluid , 2004 .

[88]  Edson Bazzo,et al.  Development of LHPs with ceramic wick , 2010 .

[89]  R. Marto,et al.  The Development of Economical Rotating Heat Pipes , 1982 .

[90]  Lin Cheng,et al.  Experimental study on capillary pumping performance of porous wicks for loop heat pipe , 2010 .

[91]  Angel Huminic,et al.  Experimental study of the thermal performance of thermosyphon heat pipe using iron oxide nanoparticles , 2011 .

[92]  S. Riffat,et al.  Flow loss caused by heat pipes in natural ventilation stacks , 1997 .

[93]  Ruzhu Wang,et al.  Design and performance prediction of a novel double heat pipes type adsorption chiller for fishing boats , 2008 .

[94]  V. Bashtovoi,et al.  Boiling heat transfer in magnetic fluids , 1993 .

[95]  P. J. Marto,et al.  Augmenting the Condenser Heat-Transfer Performance of Rotating Heat Pipes , 1979 .

[96]  Nandy Putra,et al.  Thermal performance of screen mesh wick heat pipes with nanofluids , 2012 .

[97]  Chun-Nan Chen,et al.  Heat transfer analysis of a loop heat pipe with biporous wicks , 2009 .

[98]  Adam Harvey,et al.  The role of heat pipes in intensified unit operations , 2013 .

[99]  Shwin-Chung Wong,et al.  Visualization and thermal resistance measurement for the sintered mesh-wick evaporator in operating flat-plate heat pipes , 2010 .

[100]  Yuwen Zhang,et al.  Advances and Unsolved Issues in Pulsating Heat Pipes , 2008 .

[101]  Tianshou Zhao,et al.  Experimental Study of Evaporative Heat Transfer in Sintered Copper Bidispersed Wick Structures , 2002 .

[102]  L. L. Vasiliev,et al.  Three adsorbers solar cooler with composite sorbent bed and heat pipe thermal control , 2012 .

[103]  Tadej Semenic,et al.  Experimental study of biporous wicks for high heat flux applications , 2009 .

[104]  Yi-Peng Liu,et al.  Application of nanofluid in an inclined mesh wicked heat pipes , 2012 .

[105]  Hongbin Ma,et al.  Experimental Investigation of the Maximum Heat Transport in Triangular Grooves , 1996 .

[106]  S. K. Konev,et al.  Investigation of boiling in capillary structures , 1987 .

[107]  Shung-Wen Kang,et al.  Fabrication of star grooves and rhombus grooves micro heat pipe , 2002 .

[108]  Behrooz M. Ziapour,et al.  Performance study on a diffusion absorption refrigeration heat pipe cycle , 2011 .

[109]  Nan Li,et al.  Experimental investigation of a dual compensation chamber loop heat pipe , 2010 .

[110]  Aliakbar Akbarzadeh,et al.  Design, manufacture and testing of a closed cycle thermosyphon rankine engine , 1995 .

[111]  A. Nguyen,et al.  Nanobubbles and the nanobubble bridging capillary force. , 2010, Advances in colloid and interface science.

[112]  Zhen-hua Liu,et al.  Boiling heat transfer characteristics of nanofluids in a flat heat pipe evaporator with micro-grooved heating surface , 2007 .

[113]  Mark T. North,et al.  Porous media heat exchangers for cooling of high-power optical components , 1995 .

[114]  A. B. Duncan,et al.  Experimental Investigation of Micro Heat Pipes Fabricated in Silicon Wafers , 1993 .

[115]  Karl Ochsner,et al.  Carbon dioxide heat pipe in conjunction with a ground source heat pump (GSHP) , 2008 .

[116]  G. P. Peterson,et al.  Evaporation/Boiling in Thin Capillary Wicks (II)—Effects of Volumetric Porosity and Mesh Size , 2006 .

[117]  Kim Tiow Ooi,et al.  Closed-loop pulsating heat pipe , 2001 .

[118]  Yury F. Maydanik,et al.  Hysteresis phenomena in loop heat pipes , 2007 .

[119]  Ivan Catton,et al.  BOILING AND CAPILLARY LIMIT ENHANCEMENT OF A HEAT PIPE WICK USING BIPOROUS CAPILLARY STRUCTURE , 2006 .

[120]  Qingsong Yu,et al.  An Experimental Investigation of Heat Transport Capability in a Nanofluid Oscillating Heat Pipe , 2006 .

[121]  Liu Zhongliang,et al.  The experimental study on flat plate heat pipe of magnetic working fluid , 2009 .

[122]  Yuying Yan,et al.  Recent developments of lightweight, high performance heat pipes , 2012 .

[123]  Stéphane Lips,et al.  Nucleate boiling in a flat grooved heat pipe , 2009 .

[124]  S. Tu,et al.  Corrosion failures of high temperature heat pipes , 1999 .

[125]  Shenjie Zhou,et al.  Experimental Study on Energy Saving of Fluidized Bed Dryer with Self-Excited Mode Oscillating-Flow Heat Pipe Heat Exchanger , 2010 .

[126]  Lanchao Lin,et al.  Experimental Investigation of Oscillating Heat Pipes , 2001 .

[127]  Hussam Jouhara,et al.  Experimental investigation of wraparound loop heat pipe heat exchanger used in energy efficient air handling units , 2010 .

[128]  Yang Wang,et al.  Analysis and application of variable conductance heat pipe air preheater , 2011 .

[129]  Shung-Wen Kang,et al.  Effect of Nanofluid on Flat Heat Pipe Thermal Performance , 2008, SEMI-THERM 2008.

[130]  Adrian C. Fisher,et al.  Flow visualisation: a voltammetric approach , 2001 .

[131]  Sunando DasGupta,et al.  Experimental and theoretical study of axial dryout point for evaporation from V-shaped microgrooves , 2002 .

[132]  Qunzhi Zhu,et al.  Application of aqueous nanofluids in a horizontal mesh heat pipe , 2011 .

[133]  Cao Jianfeng,et al.  Development and Test Results of a Dual Compensation Chamber Loop Heat Pipe , 2006 .