Pathwise optimal transport bounds between a one-dimensional diffusion and its Euler scheme
暂无分享,去创建一个
[1] D. Aronson,et al. Bounds for the fundamental solution of a parabolic equation , 1967 .
[2] A. Friedman. Stochastic Differential Equations and Applications , 1975 .
[3] D. W. Stroock,et al. Multidimensional Diffusion Processes , 1979 .
[4] L. Rogers. Smooth Transition Densities for One‐Dimensional Diffusions , 1985 .
[5] I. Gyöngy. Mimicking the one-dimensional marginal distributions of processes having an ito differential , 1986 .
[6] Ioannis Karatzas,et al. Brownian Motion and Stochastic Calculus , 1987 .
[7] S. Kanagawa. ON THE RATE OF CONVERGENCE FOR MARUYAMA'S APPROXIMATE SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS , 1988 .
[8] D. Talay,et al. Expansion of the global error for numerical schemes solving stochastic differential equations , 1990 .
[9] Philip Protter,et al. Wong-Zakai Corrections, Random Evolutions, and Simulation Schemes for SDE's , 1991 .
[10] P. Protter,et al. Weak Limit Theorems for Stochastic Integrals and Stochastic Differential Equations , 1991 .
[11] Jim Pitman,et al. Markovian Bridges: Construction, Palm Interpretation, and Splicing , 1993 .
[12] D. Nualart. The Malliavin Calculus and Related Topics , 1995 .
[13] D. Talay,et al. The law of the Euler scheme for stochastic differential equations , 1996 .
[14] Denis Talay,et al. The law of the Euler scheme for stochastic differential equations , 1996, Monte Carlo Methods Appl..
[15] Patrick Seumen Tonou. Méthodes numériques probabilistiques pour la résolution d'équations du transport et pour l'évaluation d'options exotiques , 1997 .
[16] S. Shreve,et al. Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.
[17] S. Rachev,et al. Mass transportation problems , 1998 .
[18] X. Mao,et al. Stochastic Differential Equations and Applications , 1998 .
[19] P. Protter,et al. Asymptotic error distributions for the Euler method for stochastic differential equations , 1998 .
[20] E. Gobet. Weak approximation of killed diffusion using Euler schemes , 2000 .
[21] E. Gobet. Euler schemes and half-space approximation for the simulation of diffusion in a domain , 2001 .
[22] E. Temam. Couverture approchée d'options exotiques : pricing des options asiatiques , 2001 .
[23] Arturo Kohatsu-Higa,et al. Weak Approximations. A Malliavin Calculus Approach , 1999, Math. Comput..
[24] Paul Glasserman,et al. Monte Carlo Methods in Financial Engineering , 2003 .
[25] Ana Bela Cruzeiro,et al. Geometrization of Monte-Carlo numerical analysis of an elliptic operator: strong approximation , 2004 .
[26] E. Gobet,et al. Exact approximation rate of killed hypoelliptic diffusions using the discrete Euler scheme , 2004 .
[27] Julien Guyon. Euler scheme and tempered distributions , 2006, 0707.1243.
[28] Céline Labart,et al. Sharp estimates for the convergence of the density of the Euler scheme in small time , 2008 .
[29] Michael B. Giles,et al. Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..
[30] C. Villani. Optimal Transport: Old and New , 2008 .
[31] B. Jourdain,et al. High Order Discretization Schemes for Stochastic Volatility Models , 2009, 0908.1926.
[32] M. Sbaï. Modélisation de la dépendance et simulation de processus en finance , 2009 .
[33] S. Menozzi,et al. On Some non Asymptotic Bounds for the Euler Scheme , 2010, 1001.1347.
[34] H. Bateman. Book Review: Ergebnisse der Mathematik und ihrer Grenzgebiete , 1933 .