Pathwise optimal transport bounds between a one-dimensional diffusion and its Euler scheme

In the present paper, we prove that the Wasserstein distance on the space of continuous sample-paths equipped with the supremum norm between the laws of a uniformly elliptic one-dimensional diffusion process and its Euler discretization with $N$ steps is smaller than $O(N^{-2/3+\varepsilon})$ where $\varepsilon$ is an arbitrary positive constant. This rate is intermediate between the strong error estimation in $O(N^{-1/2})$ obtained when coupling the stochastic differential equation and the Euler scheme with the same Brownian motion and the weak error estimation $O(N^{-1})$ obtained when comparing the expectations of the same function of the diffusion and of the Euler scheme at the terminal time $T$. We also check that the supremum over $t\in[0,T]$ of the Wasserstein distance on the space of probability measures on the real line between the laws of the diffusion at time $t$ and the Euler scheme at time $t$ behaves like $O(\sqrt{\log(N)}N^{-1})$.

[1]  D. Aronson,et al.  Bounds for the fundamental solution of a parabolic equation , 1967 .

[2]  A. Friedman Stochastic Differential Equations and Applications , 1975 .

[3]  D. W. Stroock,et al.  Multidimensional Diffusion Processes , 1979 .

[4]  L. Rogers Smooth Transition Densities for One‐Dimensional Diffusions , 1985 .

[5]  I. Gyöngy Mimicking the one-dimensional marginal distributions of processes having an ito differential , 1986 .

[6]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[7]  S. Kanagawa ON THE RATE OF CONVERGENCE FOR MARUYAMA'S APPROXIMATE SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS , 1988 .

[8]  D. Talay,et al.  Expansion of the global error for numerical schemes solving stochastic differential equations , 1990 .

[9]  Philip Protter,et al.  Wong-Zakai Corrections, Random Evolutions, and Simulation Schemes for SDE's , 1991 .

[10]  P. Protter,et al.  Weak Limit Theorems for Stochastic Integrals and Stochastic Differential Equations , 1991 .

[11]  Jim Pitman,et al.  Markovian Bridges: Construction, Palm Interpretation, and Splicing , 1993 .

[12]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[13]  D. Talay,et al.  The law of the Euler scheme for stochastic differential equations , 1996 .

[14]  Denis Talay,et al.  The law of the Euler scheme for stochastic differential equations , 1996, Monte Carlo Methods Appl..

[15]  Patrick Seumen Tonou Méthodes numériques probabilistiques pour la résolution d'équations du transport et pour l'évaluation d'options exotiques , 1997 .

[16]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[17]  S. Rachev,et al.  Mass transportation problems , 1998 .

[18]  X. Mao,et al.  Stochastic Differential Equations and Applications , 1998 .

[19]  P. Protter,et al.  Asymptotic error distributions for the Euler method for stochastic differential equations , 1998 .

[20]  E. Gobet Weak approximation of killed diffusion using Euler schemes , 2000 .

[21]  E. Gobet Euler schemes and half-space approximation for the simulation of diffusion in a domain , 2001 .

[22]  E. Temam Couverture approchée d'options exotiques : pricing des options asiatiques , 2001 .

[23]  Arturo Kohatsu-Higa,et al.  Weak Approximations. A Malliavin Calculus Approach , 1999, Math. Comput..

[24]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[25]  Ana Bela Cruzeiro,et al.  Geometrization of Monte-Carlo numerical analysis of an elliptic operator: strong approximation , 2004 .

[26]  E. Gobet,et al.  Exact approximation rate of killed hypoelliptic diffusions using the discrete Euler scheme , 2004 .

[27]  Julien Guyon Euler scheme and tempered distributions , 2006, 0707.1243.

[28]  Céline Labart,et al.  Sharp estimates for the convergence of the density of the Euler scheme in small time , 2008 .

[29]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[30]  C. Villani Optimal Transport: Old and New , 2008 .

[31]  B. Jourdain,et al.  High Order Discretization Schemes for Stochastic Volatility Models , 2009, 0908.1926.

[32]  M. Sbaï Modélisation de la dépendance et simulation de processus en finance , 2009 .

[33]  S. Menozzi,et al.  On Some non Asymptotic Bounds for the Euler Scheme , 2010, 1001.1347.

[34]  H. Bateman Book Review: Ergebnisse der Mathematik und ihrer Grenzgebiete , 1933 .