Direct methanol utilization in intermediate temperature liquid-tin anode solid oxide fuel cells

[1]  Jack Brouwer,et al.  Poly-generating closed cathode fuel cell with carbon capture , 2014 .

[2]  Boxun Hu,et al.  Stability of strontium-doped lanthanum manganite cathode in humidified air , 2014 .

[3]  Alexandra M. Newman,et al.  Establishing conditions for the economic viability of fuel cell-based, combined heat and power distributed generation systems , 2013 .

[4]  Nigel P. Brandon,et al.  Raman Spectroscopy of Solid Oxide Fuel Cells: Technique Overview and Application to Carbon Deposition Analysis , 2013 .

[5]  Minfang Han,et al.  NiCu–Zr0.1Ce0.9O2−δ anode materials for intermediate temperature solid oxide fuel cells using hydrocarbon fuels , 2013 .

[6]  W. C. Maskell,et al.  A review of liquid metal anode solid oxide fuel cells , 2013 .

[7]  Qiang Sun,et al.  Solid Oxide Fuel Cell Anode Materials for Direct Hydrocarbon Utilization , 2012 .

[8]  Meilin Liu,et al.  Raman spectroscopic monitoring of carbon deposition on hydrocarbon-fed solid oxide fuel cell anodes , 2012 .

[9]  Lei Zhang,et al.  Tunable Reactive Wetting of Sn on Microporous Cu Layer , 2012 .

[10]  Tsang-Dong Chung,et al.  Efficiency analyses of ethanol-fueled solid oxide fuel cell power system , 2011 .

[11]  T. Tao,et al.  Direct JP-8 Conversion Using a Liquid Tin Anode Solid Oxide Fuel Cell (LTA-SOFC) for Military Applications , 2011 .

[12]  Ping Liu,et al.  Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells , 2011, Nature communications.

[13]  Tong Seop Kim,et al.  An integrated power generation system combining solid oxide fuel cell and oxy-fuel combustion for high performance and CO2 capture , 2011 .

[14]  Andrew J. Eckel,et al.  Regenerative Performance of the NASA Symmetrical Solid Oxide Fuel Cell Design , 2011 .

[15]  Ping Liu Water-gas shift reaction on oxide∕Cu(111): Rational catalyst screening from density functional theory. , 2010, The Journal of chemical physics.

[16]  J. Hill,et al.  Direct utilization of methanol on impregnated Ni/YSZ and Ni–Zr0.35Ce0.65O2/YSZ anodes for solid oxide fuel cells , 2010 .

[17]  J. Vohs,et al.  Molten-Metal Electrodes for Solid Oxide Fuel Cells , 2010 .

[18]  Paolo Ciambelli,et al.  Low temperature catalytic steam reforming of ethanol. 2. Preliminary kinetic investigation of Pt/CeO2 catalysts , 2010 .

[19]  S. Hyun,et al.  Improved solid oxide fuel cell anodes for the direct utilization of methane using Sn-doped Ni/YSZ catalysts , 2009 .

[20]  Alberto Traverso,et al.  Liquid fuel utilization in SOFC hybrid systems , 2009 .

[21]  J. D. Stuart,et al.  Demonstration of a Liquid-Tin Anode Solid-Oxide Fuel Cell (LTA-SOFC) Operating from Biodiesel Fuel , 2009 .

[22]  J. Papavasiliou,et al.  Steady-state isotopic transient kinetic analysis of steam reforming of methanol over Cu-based catalysts , 2009 .

[23]  C. W. Hong,et al.  Cold start dynamics and temperature sliding observer design of an automotive SOFC APU , 2009 .

[24]  Norbert Wagner,et al.  Investigation of solid oxide fuel cell short stacks for mobile applications by electrochemical impedance spectroscopy , 2008 .

[25]  Dehua Dong,et al.  Direct liquid methanol-fueled solid oxide fuel cell , 2008 .

[26]  Suttichai Assabumrungrat,et al.  Effect of high surface area CeO2 and Ce-ZrO2 supports over Ni catalyst on CH4 reforming with H2O in the presence of O2, H2, and CO2 , 2008 .

[27]  S. Sofie,et al.  A symmetrical, planar SOFC design for NASA's high specific power density requirements , 2007 .

[28]  Michael D. Gross,et al.  Recent progress in SOFC anodes for direct utilization of hydrocarbons , 2007 .

[29]  K. I. Johnson,et al.  Electrochemistry and On‐Cell Reformation Modeling for Solid Oxide Fuel Cell Stacks , 2006 .

[30]  John S. Hardy,et al.  Material Degradation during Isothermal Aging and Thermal Cycling of Hybrid Mica Seal with Ag Interlayer under SOFC Exposure Conditions , 2006 .

[31]  E. Assaf,et al.  Double bed reactor for the simultaneous steam reforming of ethanol and water gas shift reactions , 2006 .

[32]  Taeyoon Kim,et al.  A study of carbon formation and prevention in hydrocarbon-fueled SOFC , 2006 .

[33]  Y. Matsumura,et al.  Steam reforming of methanol over Cu/CeO2/ZrO2 catalysts , 2005 .

[34]  R. Schlögl,et al.  Steam reforming of methanol over Cu/ZrO2/CeO2 catalysts: a kinetic study , 2005 .

[35]  Mark C. Williams,et al.  U.S. distributed generation fuel cell program , 2004 .

[36]  A. Virkar,et al.  Fuel Composition and Diluent Effect on Gas Transport and Performance of Anode-Supported SOFCs , 2003 .

[37]  Raymond J. Gorte,et al.  Direct oxidation of hydrocarbons in a solid-oxide fuel cell , 2000, Nature.

[38]  S. A. Barnett,et al.  A direct-methane fuel cell with a ceria-based anode , 1999, Nature.

[39]  Andrew Murray,et al.  Cell cycle: A snip separates sisters , 1999, Nature.

[40]  Dong Nyung Lee,et al.  Thermodynamic Assessment of the Cu-Sn System , 1996 .