Algebraic Multigrid Solvers for Complex-Valued Matrices

In the mathematical modeling of real-life applications, systems of equations with complex coefficients often arise. While many techniques of numerical linear algebra, e.g., Krylov-subspace methods, extend directly to the case of complex-valued matrices, some of the most effective preconditioning techniques and linear solvers are limited to the real-valued case. Here, we consider the extension of the popular algebraic multigrid method to such complex-valued systems. The choices for this generalization are motivated by classical multigrid considerations, evaluated with the tools of local Fourier analysis, and verified on a selection of problems related to real-life applications.

[1]  O. Widlund,et al.  Domain Decomposition Methods in Science and Engineering XVI , 2007 .

[2]  Thomas A. Manteuffel,et al.  Adaptive reduction‐based AMG , 2006, Numer. Linear Algebra Appl..

[3]  Mark F. Adams,et al.  Algebraic Multigrid Methods for Direct Frequency Response Analyses in Solid Mechanics , 2007 .

[4]  Louis A. Hageman,et al.  Iterative Solution of Large Linear Systems. , 1971 .

[5]  A. Brandt Algebraic multigrid theory: The symmetric case , 1986 .

[6]  A. Brandt,et al.  The Multi-Grid Method for the Diffusion Equation with Strongly Discontinuous Coefficients , 1981 .

[7]  David Day,et al.  Solving Complex-Valued Linear Systems via Equivalent Real Formulations , 2001, SIAM J. Sci. Comput..

[8]  U. Trottenberg,et al.  A note on MGR methods , 1983 .

[9]  K. Stüben,et al.  Multigrid methods: Fundamental algorithms, model problem analysis and applications , 1982 .

[10]  S. Reitzinger,et al.  Algebraic multigrid for complex symmetric matrices and applications , 2003 .

[11]  S. F. McCormick,et al.  Multigrid Methods for Variational Problems , 1982 .

[12]  J. E. Dendy Black box multigrid for nonsymmetric problems , 1983 .

[13]  Thomas A. Manteuffel,et al.  Adaptive Algebraic Multigrid , 2005, SIAM J. Sci. Comput..

[14]  I. Montvay,et al.  Quantum Fields on a Lattice: Introduction , 1994 .

[15]  Cornelis Vuik,et al.  A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems , 2005, SIAM J. Sci. Comput..

[16]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[17]  David E. Keyes,et al.  Adaptive Smoothed Aggregation in Lattice QCD , 2007 .

[18]  Christine Davies,et al.  Lattice QCD meets experiment in hadron physics , 2004 .

[19]  Thomas A. Manteuffel,et al.  An energy‐based AMG coarsening strategy , 2006, Numer. Linear Algebra Appl..

[20]  R. Varga On recurring theorems on diagonal dominance , 1976 .

[21]  Yousef Saad,et al.  A Greedy Strategy for Coarse-Grid Selection , 2007, SIAM J. Sci. Comput..

[22]  A. Brandt General highly accurate algebraic coarsening. , 2000 .

[23]  Marian Brezina,et al.  Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems , 2005, Computing.

[24]  Jan Smit,et al.  Introduction to Quantum Fields on a Lattice , 2002 .

[25]  Kay Hameyer,et al.  Algebraic multigrid for complex symmetric systems , 2000 .

[26]  Cornelis W. Oosterlee,et al.  On Three-Grid Fourier Analysis for Multigrid , 2001, SIAM J. Sci. Comput..

[27]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[28]  T. Manteuffel,et al.  Adaptive Smoothed Aggregation ( α SA ) Multigrid ∗ , 2005 .