Fitting procedure based on Differential Evolution to evaluate impedance parameters of metal–coating systems

Impedance data obtained by electrochemical impedance spectroscopy (EIS) are fitted to a relevant electrical equivalent circuit to evaluate parameters directly related to the resistance and the durability of metal–coating systems. The purpose of this study is to present a novel and more efficient computational strategy for the modelling of EIS measurements using the Differential Evolution paradigm.,An alternative method to non-linear regression algorithms for the analysis of measured data in terms of equivalent circuit parameters is provided by evolutionary algorithms, particularly the Differential Evolution (DE) algorithms (standard DE and a representative of the self-adaptive DE paradigm were used).,The results obtained with DE algorithms were compared with those yielding from commercial fitting software, achieving a more accurate solution, and a better parameter identification, in all the cases treated. Further, an enhanced fitting power for the modelling of metal–coating systems was obtained.,The great potential of the developed tool has been demonstrated in the analysis of the evolution of EIS spectra due to progressive degradation of metal–coating systems. Open codes of the different differential algorithms used are included, and also, examples tackled in the document are open. It allows the complete use, or improvement, of the developed tool by researchers.

[1]  J. Scully,et al.  Lifetime Prediction for Organic Coatings on Steel and a Magnesium Alloy Using Electrochemical Impedance Methods , 1994 .

[2]  Rakesh Angira,et al.  Optimization of dynamic systems: A trigonometric differential evolution approach , 2007, Comput. Chem. Eng..

[3]  Patrick Siarry,et al.  Applications of Metaheuristics in Process Engineering , 2014, Springer International Publishing.

[4]  Jinping Xiong,et al.  Study on corrosion electrochemical behavior of several different coating systems by EIS , 2009 .

[5]  David Greiner,et al.  Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences , 2016 .

[6]  Xuefeng Yan,et al.  Differential evolution algorithm with self-adaptive strategy and control parameters for P-xylene oxidation process optimization , 2014, Soft Computing.

[7]  Jacques Periaux,et al.  Evolutionary algorithms and metaheuristics: applications in engineering design and optimization , 2018 .

[8]  Michel Keddam,et al.  New methods for the study of organic coatings by EIS , 2001 .

[9]  Florian Mansfeld,et al.  Use of electrochemical impedance spectroscopy for the study of corrosion protection by polymer coatings , 1995 .

[10]  G. Frankel,et al.  Coating and interface degradation of coated steel, Part 1: Field exposure , 2014 .

[11]  Lishan Kang,et al.  A new approach to the estimation of electrocrystallization parameters , 1999 .

[12]  M. Kendig,et al.  An historical perspective on the corrosion protection by paints , 2017 .

[13]  Rosemary A. Renaut,et al.  Non-negatively constrained least squares and parameter choice by the residual periodogram for the inversion of electrochemical impedance spectroscopy data , 2013, J. Comput. Appl. Math..

[14]  B. Boukamp A Nonlinear Least Squares Fit procedure for analysis of immittance data of electrochemical systems , 1986 .

[15]  C. B. Lucasius,et al.  Understanding and using genetic algorithms Part 1. Concepts, properties and context , 1993 .

[16]  Alex S. Fukunaga,et al.  Improving the search performance of SHADE using linear population size reduction , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[17]  J. Rodríguez Estudio de la corrosión atmosférica del acero al carbono en la provincia de Las Palmas mediante técnicas clásicas y electroquímicas. Elaboración del mapa de corrosividad , 2011 .

[18]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[19]  Jiansheng Liu,et al.  A image segmentation algorithm based on differential evolution particle swarm optimization fuzzy c-means clustering , 2015, Comput. Sci. Inf. Syst..

[20]  Gordon P. Bierwagen,et al.  EIS studies of coated metals in accelerated exposure , 2003 .

[21]  Lorenzo Fedrizzi,et al.  Electrochemical impedance spectroscopy as a tool for investigating underpaint corrosion , 1996 .

[22]  Laureano Jiménez,et al.  Heat exchanger network synthesis using genetic algorithm and differential evolution , 2018, Comput. Chem. Eng..

[23]  G. Frankel,et al.  Coating and Interface Degradation of Coated steel, Part 2: Accelerated Laboratory Tests , 2014 .

[24]  B. V. Babu,et al.  Modified differential evolution (MDE) for optimization of non-linear chemical processes , 2006, Comput. Chem. Eng..

[25]  John R. Scully,et al.  Basic Aspects of Electrochemical Impedance Application for the Life Prediction of Organic Coatings on Metals , 1990 .

[26]  J. Ross Macdonald,et al.  Applicability and power of complex nonlinear least squares for the analysis of impedance and admittance data , 1982 .

[27]  Qinqin Fan,et al.  Self-adaptive differential evolution algorithm with crossover strategies adaptation and its application in parameter estimation , 2016 .

[28]  James Ross Macdonald,et al.  IMPEDANCE SPECTROSCOPY: OLD PROBLEMS AND NEW DEVELOPMENTS , 1990 .

[29]  John R. Scully,et al.  Electrochemical Impedance of Organic‐Coated Steel: Correlation of Impedance Parameters with Long‐Term Coating Deterioration , 1989 .

[30]  Jacques Periaux,et al.  Game Theory Based Evolutionary Algorithms: A Review with Nash Applications in Structural Engineering Optimization Problems , 2017 .

[31]  Lishan Kang,et al.  An evolutionary approach for modeling the equivalent circuit for electrochemical impedance spectroscopy , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[32]  D. B. Hibbert Genetic algorithms in chemistry , 1993 .

[33]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[34]  F. Mansfeld Models for the impedance behavior of protective coatings and cases of localized corrosion , 1993 .

[35]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[36]  L. Wrobel,et al.  Genetic algorithms for inverse cathodic protection problems , 2004 .

[37]  Bo Peng,et al.  Differential evolution algorithm-based parameter estimation for chaotic systems , 2009 .

[38]  Ville Tirronen,et al.  Recent advances in differential evolution: a survey and experimental analysis , 2010, Artificial Intelligence Review.

[39]  Alex S. Fukunaga,et al.  Success-history based parameter adaptation for Differential Evolution , 2013, 2013 IEEE Congress on Evolutionary Computation.

[40]  D. Thierry,et al.  Evaluation of the tendency of coil-coated materials to blistering: Field exposure, accelerated tests and electrochemical measurements , 2012 .

[41]  Haibo Zhang,et al.  One-step approach for heat exchanger network retrofitting using integrated differential evolution , 2013, Comput. Chem. Eng..

[42]  Abeeb A. Awotunde,et al.  Self-adaptive differential evolution with a novel adaptation technique and its application to optimize ES-SAGD recovery process , 2018, Comput. Chem. Eng..

[43]  Fernando Cunha Peixoto,et al.  A study of equivalent electrical circuit fitting to electrochemical impedance using a stochastic method , 2017, Appl. Soft Comput..

[44]  Mark E. Orazem,et al.  On the Application of the Kramers‐Kronig Relations to Evaluate the Consistency of Electrochemical Impedance Data , 1991 .

[45]  Mohd Shahir Shamsir,et al.  Using an Improved Differential Evolution Algorithm for Parameter Estimation to Simulate Glycolysis Pathway , 2012, DCAI.

[46]  M. Robinson,et al.  A genetic algorithm for optimizing multi-pole Debye models of tissue dielectric properties , 2012, Physics in medicine and biology.

[47]  Mark E. Orazem,et al.  Electrochemical Impedance Spectroscopy: Orazem/Electrochemical , 2008 .

[48]  Mehmet Fatih Tasgetiren,et al.  Differential evolution algorithm with ensemble of parameters and mutation strategies , 2011, Appl. Soft Comput..

[49]  K.P. Wong,et al.  Application of Differential Evolution Algorithm for Transient Stability Constrained Optimal Power Flow , 2008, IEEE Transactions on Power Systems.

[50]  Branko J. Malesevic,et al.  Refined Estimates and Generalizations of Inequalities Related to the Arctangent Function and Shafer’s Inequality , 2017, Mathematical Problems in Engineering.

[51]  Isaac Abrahams,et al.  The use of genetic algorithms in the non-linear regression of immittance data , 1998 .

[52]  J. A. Garber,et al.  Analysis of Impedance and Admittance Data for Solids and Liquids , 1977 .

[53]  P. Rocca,et al.  Differential Evolution as Applied to Electromagnetics , 2011, IEEE Antennas and Propagation Magazine.

[54]  Ponnuthurai N. Suganthan,et al.  An Adaptive Differential Evolution Algorithm With Novel Mutation and Crossover Strategies for Global Numerical Optimization , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[55]  Qingfu Zhang,et al.  Differential Evolution With Composite Trial Vector Generation Strategies and Control Parameters , 2011, IEEE Transactions on Evolutionary Computation.

[56]  D. B. Hibbert,et al.  A hybrid genetic algorithm for the estimation of kinetic parameters , 1993 .

[57]  M. G. Saber,et al.  Performance Analysis of a Differential Evolution Algorithm in Modeling Parameter Extraction of Optical Material , 2017, Silicon.

[58]  A. Amirudin,et al.  Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals , 1995 .

[59]  J. J. Santana,et al.  Resistance of metallic substrates protected by an organic coating containing glass flakes , 2010 .

[60]  Ruhul A. Sarker,et al.  A self-adaptive combined strategies algorithm for constrained optimization using differential evolution , 2014, Appl. Math. Comput..

[61]  M. Kendig,et al.  Electrochemical Impedance of Coated Metal Undergoing Loss of Adhesion , 1993 .

[62]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[63]  A. Kai Qin,et al.  Self-adaptive differential evolution algorithm for numerical optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.

[64]  Roberto P. Domingos,et al.  Novel electrochemical impedance simulation design via stochastic algorithms for fitting equivalent circuits , 2016 .