Digital quantum simulation of spin models with circuit quantum electrodynamics

Systems of interacting quantum spins show a rich spectrum of quantum phases and display interesting many-body dynamics. Computing characteristics of even small systems on conventional computers poses significant challenges. A quantum simulator has the potential to outperform standard computers in calculating the evolution of complex quantum systems. Here, we perform a digital quantum simulation of the paradigmatic Heisenberg and Ising interacting spin models using a two transmon-qubit circuit quantum electrodynamics setup. We make use of the exchange interaction naturally present in the simulator to construct a digital decomposition of the model-specific evolution and extract its full dynamics. This approach is universal and efficient, employing only resources which are polynomial in the number of spins and indicates a path towards the controlled simulation of general spin dynamics in superconducting qubit platforms.

[1]  B. Lanyon,et al.  Universal Digital Quantum Simulation with Trapped Ions , 2011, Science.

[2]  J. Siewert,et al.  Natural two-qubit gate for quantum computation using the XY interaction , 2002, quant-ph/0209035.

[3]  Daniel Sank,et al.  Fast accurate state measurement with superconducting qubits. , 2014, Physical review letters.

[4]  Alessandro Silva,et al.  Colloquium: Nonequilibrium dynamics of closed interacting quantum systems , 2010, 1007.5331.

[5]  E. Knill,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[6]  Luigi Frunzio,et al.  Optimized driving of superconducting artificial atoms for improved single-qubit gates , 2010 .

[7]  Y. Salathe,et al.  Deterministic quantum teleportation with feed-forward in a solid state system , 2013, Nature.

[8]  Zhihao Lan,et al.  Quantum simulations with ultracold quantum gases , 2012 .

[9]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[10]  L. DiCarlo,et al.  Demonstration of two-qubit algorithms with a superconducting quantum processor , 2009, Nature.

[11]  D J Egger,et al.  Adaptive hybrid optimal quantum control for imprecisely characterized systems. , 2014, Physical review letters.

[12]  L. Balents Spin liquids in frustrated magnets , 2010, Nature.

[13]  A. N. Korotkov,et al.  Two-qubit decoherence mechanisms revealed via quantum process tomography , 2009, 0903.0671.

[14]  E. Solano,et al.  Digital Quantum Simulation of Spin Systems in Superconducting Circuits , 2013, 1311.7626.

[15]  J. Cirac,et al.  Cold atom simulation of interacting relativistic quantum field theories. , 2010, Physical review letters.

[16]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[17]  R. Barends,et al.  Observation of topological transitions in interacting quantum circuits , 2014, Nature.

[18]  H. Lu,et al.  Cryogenic Control Architecture for Large-Scale Quantum Computing , 2014, 1409.2202.

[19]  B. Yurke,et al.  Performance of Cavity-Parametric Amplifiers, Employing Kerr Nonlinearites, in the Presence of Two-Photon Loss , 2006, Journal of Lightwave Technology.

[20]  Alexey V. Gorshkov,et al.  Non-local propagation of correlations in quantum systems with long-range interactions , 2014, Nature.

[21]  F. K. Wilhelm,et al.  Single-qubit gates in frequency-crowded transmon systems , 2013, 1306.2279.

[22]  Zach DeVito,et al.  Opt , 2017 .

[23]  R. Cleve,et al.  Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.

[24]  B. Lanyon,et al.  Quasiparticle engineering and entanglement propagation in a quantum many-body system , 2014, Nature.

[25]  A N Cleland,et al.  Optimal quantum control using randomized benchmarking. , 2014, Physical review letters.

[26]  A. Wallraff,et al.  Quantum-limited amplification and entanglement in coupled nonlinear resonators. , 2014, Physical review letters.

[27]  Immanuel Bloch,et al.  Quantum Phase Transition from a Superfluid to a Mott Insulator in a Gas of Ultracold Atoms. , 2002 .

[28]  M. Lewenstein,et al.  Wilson fermions and axion electrodynamics in optical lattices. , 2010, Physical review letters.

[29]  A. Zeilinger,et al.  Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems , 2010, 1008.4116.

[30]  John M. Martinis,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2015, Nature.

[31]  Jens Koch,et al.  Randomized benchmarking and process tomography for gate errors in a solid-state qubit. , 2008, Physical review letters.

[32]  R. Blatt,et al.  Quantum simulations with trapped ions , 2011, Nature Physics.

[33]  L. DiCarlo,et al.  Initialization by measurement of a superconducting quantum bit circuit. , 2012, Physical review letters.

[34]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[35]  Isaac L. Chuang,et al.  Prescription for experimental determination of the dynamics of a quantum black box , 1997 .

[36]  F. Fressin,et al.  Emergence and Frustration of Magnetism with Variable-Range Interactions in a Quantum Simulator , 2012, Science.

[37]  Andreas Wallraff,et al.  Multimode mediated qubit-qubit coupling and dark-state symmetries in circuit quantum electrodynamics , 2011 .

[38]  R. Blatt,et al.  Quantum simulation of the Dirac equation , 2009, Nature.

[39]  Manuel Castellanos-Beltran,et al.  Widely tunable parametric amplifier based on a superconducting quantum interference device array resonator , 2007 .

[40]  M. Weides,et al.  Generation of three-qubit entangled states using superconducting phase qubits , 2010, Nature.

[41]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[42]  T. Schaetz,et al.  Simulating a quantum magnet with trapped ions , 2008 .

[43]  J M Gambetta,et al.  Simple pulses for elimination of leakage in weakly nonlinear qubits. , 2009, Physical review letters.

[44]  E. Solano,et al.  Digital Quantum Rabi and Dicke Models in Superconducting Circuits , 2014, Scientific Reports.

[45]  L. Vandersypen,et al.  NMR techniques for quantum control and computation , 2004, quant-ph/0404064.

[46]  P Bertet,et al.  Characterization of a two-transmon processor with individual single-shot qubit readout. , 2012, Physical review letters.

[47]  Anatoli Polkovnikov,et al.  Measuring a topological transition in an artificial spin-1/2 system. , 2014, Physical review letters.

[48]  Jens Koch,et al.  Coupling superconducting qubits via a cavity bus , 2007, Nature.

[49]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[50]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[51]  S. Sachdev Quantum Phase Transitions , 1999 .

[52]  Jens Eisert,et al.  Absence of thermalization in nonintegrable systems. , 2010, Physical review letters.

[53]  C. C. Bultink,et al.  Feedback control of a solid-state qubit using high-fidelity projective measurement. , 2012, Physical review letters.

[54]  Canada,et al.  Dynamics of dispersive single-qubit readout in circuit quantum electrodynamics , 2009, 0907.2549.

[55]  R. Feynman Simulating physics with computers , 1999 .

[56]  Jay M. Gambetta,et al.  Process verification of two-qubit quantum gates by randomized benchmarking , 2012, 1210.7011.

[57]  Immanuel Bloch,et al.  Microscopic observation of magnon bound states and their dynamics , 2013, Nature.

[58]  Liu Ye,et al.  Implementing Two-Qubit SWAP Gate with SQUID Qubits in a Microwave Cavity via Adiabatic Passage Evolution , 2012 .

[59]  S. Poletto,et al.  Detecting bit-flip errors in a logical qubit using stabilizer measurements , 2014, Nature Communications.

[60]  Nathan Wiebe,et al.  Hamiltonian simulation using linear combinations of unitary operations , 2012, Quantum Inf. Comput..

[61]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[62]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[63]  Andrew W. Cross,et al.  Implementing a strand of a scalable fault-tolerant quantum computing fabric , 2013, Nature Communications.

[64]  J. M. Gambetta,et al.  Analytic control methods for high-fidelity unitary operations in a weakly nonlinear oscillator , 2010, 1011.1949.

[65]  A. Houck,et al.  On-chip quantum simulation with superconducting circuits , 2012, Nature Physics.

[66]  Alán Aspuru-Guzik,et al.  Photonic quantum simulators , 2012, Nature Physics.

[67]  J. Gambetta,et al.  Two-qubit state tomography using a joint dispersive readout. , 2008, Physical review letters.

[68]  M. Suzuki,et al.  Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations , 1990 .

[69]  B. Lanyon,et al.  Towards quantum chemistry on a quantum computer. , 2009, Nature chemistry.

[70]  P. Zoller,et al.  Complete Characterization of a Quantum Process: The Two-Bit Quantum Gate , 1996, quant-ph/9611013.

[71]  Barry C. Sanders,et al.  Simulating quantum dynamics on a quantum computer , 2010, 1011.3489.