Utility of GenBank and the Barcode of Life Data Systems (BOLD) for the identification of forensically important Diptera from Belgium and France
暂无分享,去创建一个
Gontran Sonet | Kurt Jordaens | Marc De Meyer | Thierry Backeljau | Stijn Desmyter | T. Backeljau | G. Sonet | K. Jordaens | M. De Meyer | Yves Braet | Luc Bourguignon | Eréna Dupont | Y. Braet | L. Bourguignon | S. Desmyter | E. Dupont
[1] W. Bass,et al. Insect Activity and Its Relationship to Decay Rates of Human Cadavers in East Tennessee , 1983 .
[2] R. Cruickshank,et al. The seven deadly sins of DNA barcoding , 2012, Molecular ecology resources.
[3] J. Thompson,et al. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.
[4] Gaurav Vaidya,et al. DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. , 2006, Systematic biology.
[5] W R Mayr,et al. ISFG: recommendations regarding the use of non-human (animal) DNA in forensic genetic investigations. , 2011, Forensic science international. Genetics.
[6] Bruno Nevado,et al. Comparative performances of DNA barcoding across insect orders , 2010, BMC Bioinformatics.
[7] Carlo P. Campobasso,et al. Best practice in forensic entomology—standards and guidelines , 2007, International Journal of Legal Medicine.
[8] L. Boykin,et al. Barcoding's next top model: an evaluation of nucleotide substitution models for specimen identification , 2012 .
[9] T. Pape,et al. DNA-based identification and molecular systematics of forensically important Sarcophagidae (Diptera). , 2001, Journal of forensic sciences.
[10] Jifeng Cai,et al. Identification of Forensically Important Sarcophagid Flies (Diptera: Sarcophagidae) in China, Based on COI and 16S rDNA Gene Sequences * , 2011, Journal of forensic sciences.
[11] M. C. Espósito,et al. Molecular phylogenetics of Oestroidea (Diptera: Calyptratae) with emphasis on Calliphoridae: insights into the inter-familial relationships and additional evidence for paraphyly among blowflies. , 2012, Molecular phylogenetics and evolution.
[12] A. Lambert,et al. ABGD, Automatic Barcode Gap Discovery for primary species delimitation , 2012, Molecular ecology.
[13] A. Gunn,et al. The ability of the blowflies Calliphora vomitoria (Linnaeus), Calliphora vicina (Rob-Desvoidy) and Lucilia sericata (Meigen) (Diptera: Calliphoridae) and the muscid flies Muscina stabulans (Fallén) and Muscina prolapsa (Harris) (Diptera: Muscidae) to colonise buried remains. , 2011, Forensic science international.
[14] M. I. Marchenko. Medicolegal relevance of cadaver entomofauna for the determination of the time of death. , 2001, Forensic science international.
[15] Brian K. Schmidt,et al. Project Description: DNA Barcodes of Bird Species in the National Museum of Natural History, Smithsonian Institution, USA , 2011, ZooKeys.
[16] Xue-xin Chen,et al. Utility of Multi-Gene Loci for Forensic Species Diagnosis of Blowflies , 2011, Journal of insect science.
[17] T. Pape,et al. The Muscoidea (Diptera: Calyptratae) are paraphyletic: Evidence from four mitochondrial and four nuclear genes. , 2008, Molecular phylogenetics and evolution.
[18] R. Zehner,et al. The use of COI barcodes for molecular identification of forensically important fly species in Germany , 2011, Parasitology Research.
[19] D. Janzen,et al. When species matches are unavailable are DNA barcodes correctly assigned to higher taxa? An assessment using sphingid moths , 2011, BMC Ecology.
[20] S. Adamowicz,et al. DNA barcoding of Northern Nearctic Muscidae (Diptera) reveals high correspondence between morphological and molecular species limits , 2012, BMC Ecology.
[21] N. Baeshen,et al. Biological Identifications Through DNA Barcodes , 2012 .
[22] Ana Rita Oliveira,et al. Identification of sarcosaprophagous Diptera species through DNA barcoding in wildlife forensics. , 2013, Forensic science international.
[23] D. Charabidze,et al. La biologie des insectes nécrophages et leur utilisation pour dater le décès en entomologie médico-légale , 2012 .
[24] S. Gaudieri,et al. Mitochondrial DNA cytochrome oxidase I gene: potential for distinction between immature stages of some forensically important fly species (Diptera) in western Australia. , 2003, Forensic science international.
[25] S. Ferrara,et al. Use of Lucilia species for forensic investigations in Southern Europe. , 2008, Forensic science international.
[26] J. Vian,et al. Partial sequencing of the cytochrome oxydase b subunit gene I: a tool for the identification of European species of blow flies for postmortem interval estimation. , 2000, Journal of forensic sciences.
[27] T. Backeljau,et al. Identifying Insects with Incomplete DNA Barcode Libraries, African Fruit Flies (Diptera: Tephritidae) as a Test Case , 2012, PloS one.
[28] C. Reiter,et al. Effect of temperature on development of Liopygia (= Sarcophaga) argyrostoma (Robineau-Desvoidy) (Diptera: Sarcophagidae) and its forensic implications. , 2002, Journal of forensic sciences.
[29] S. Donnellan,et al. The utility of mitochondrial DNA sequences for the identification of forensically important blowflies (Diptera: Calliphoridae) in southeastern Australia. , 2001, Forensic science international.
[30] F. Pereira,et al. A Guide for Mitochondrial DNA Analysis in Non-Human Forensic Investigations , 2012 .
[31] Alejandro A. Schäffer,et al. Database indexing for production MegaBLAST searches , 2008, Bioinform..
[32] W. Xinghua,et al. The availability of 16SrDNA gene for identifying forensically important blowflies in China , 2010 .
[33] M. Kimura. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences , 1980, Journal of Molecular Evolution.
[34] J. Stevens,et al. Application of DNA-based methods in forensic entomology. , 2008, Annual review of entomology.
[35] S. Gaudieri,et al. A global study of forensically significant calliphorids: implications for identification. , 2008, Forensic science international.
[36] J D Wells,et al. A DNA-based approach to the identification of insect species used for postmortem interval estimation and partial sequencing of the cytochrome oxydase b subunit gene I: a tool for the identification of European species of blow flies for postmortem interval estimation. , 2000, Journal of forensic sciences.
[37] J. Vaňhara,et al. The Muscidae (Diptera) of Central Europe , 2002 .
[38] F. Sperling,et al. A DNA-based approach to the identification of insect species used for postmortem interval estimation. , 1994, Journal of forensic sciences.
[39] Lukas Wagner,et al. A Greedy Algorithm for Aligning DNA Sequences , 2000, J. Comput. Biol..
[40] R. Coquoz,et al. DNA typing for identification of some species of Calliphoridae. An interest in forensic entomology. , 1999, Forensic science international.
[41] A. Tagliabracci,et al. DNA degradation and genetic analysis of empty puparia: genetic identification limits in forensic entomology. , 2010, Forensic science international.
[42] Filipe Pereira,et al. A Guide for Mitochondrial DNA Analysis in Non-Human Forensic Investigations~!2010-01-07~!2010-04-02~!2010-05-17~! , 2010 .
[43] Jan Sauer,et al. Genetic identification of forensically important flesh flies (Diptera: Sarcophagidae) , 2004, International Journal of Legal Medicine.
[44] Jifeng Cai,et al. Identification of forensically significant calliphorids based on mitochondrial DNA cytochrome oxidase I (COI) gene in China. , 2011, Forensic science international.
[45] M. Dowton,et al. DNA-based identification of forensically important Australian Sarcophagidae (Diptera) , 2009, International Journal of Legal Medicine.
[46] S. Desmyter,et al. COI sequence variability between Chrysomyinae of forensic interest. , 2009, Forensic science international. Genetics.
[47] A. Martínez-Sánchez,et al. Larval morphology, development and forensic importance of Synthesiomyia nudiseta (Diptera: Muscidae) in Europe: a rare species or just overlooked? , 2012, Bulletin of Entomological Research.
[48] J. Stevens,et al. Paraphyly in Hawaiian hybrid blowfly populations and the evolutionary history of anthropophilic species , 2002, Insect molecular biology.
[49] J. Wells,et al. Validation of a DNA-based method for identifying Chrysomyinae (Diptera: Calliphoridae) used in a death investigation , 2006, International Journal of Legal Medicine.
[50] G. Sonet,et al. Why is the molecular identification of the forensically important blowfly species Lucilia caesar and L. illustris (family Calliphoridae) so problematic? , 2012, Forensic science international.
[51] M. Pancorbo,et al. DNA typing of Diptera collected from human corpses in Portugal. , 2009, Forensic science international.
[52] M. Gouy,et al. Relationship between morphological taxonomy and molecular divergence within Crustacea: proposal of a molecular threshold to help species delimitation. , 2006, Molecular phylogenetics and evolution.
[53] G. Sonet,et al. Identification of forensically important Sarcophaga species (Diptera: Sarcophagidae) using the mitochondrial COI gene , 2013, International Journal of Legal Medicine.
[54] J. Stevens,et al. Phylogenetic analysis of forensically important Lucilia flies based on cytochrome oxidase I sequence: a cautionary tale for forensic species determination , 2007, International Journal of Legal Medicine.
[55] Michael Balke,et al. The Effect of Geographical Scale of Sampling on DNA Barcoding , 2012, Systematic biology.
[56] H. Magalon,et al. DNA barcoding cannot reliably identify species of the blowfly genus Protocalliphora (Diptera: Calliphoridae) , 2007, Proceedings of the Royal Society B: Biological Sciences.
[57] M. Haase,et al. Pitfalls in comparisons of genetic distances: a case study of the avian family Acrocephalidae. , 2012, Molecular phylogenetics and evolution.
[58] M. Dowton,et al. DNA Barcoding Identifies all Immature Life Stages of a Forensically Important Flesh Fly (Diptera: Sarcophagidae) , 2013, Journal of forensic sciences.
[59] F. Sperling,et al. DNA-based identification of forensically important Chrysomyinae (Diptera: Calliphoridae). , 2001, Forensic science international.
[60] M. Nei,et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.
[61] A. Serrano,et al. Carrion flies of forensic interest: a study of seasonal community composition and succession in Lisbon, Portugal , 2012, Medical and veterinary entomology.
[62] P. Hebert,et al. bold: The Barcode of Life Data System (http://www.barcodinglife.org) , 2007, Molecular ecology notes.
[63] Rob Ogden,et al. Validation of the barcoding gene COI for use in forensic genetic species identification. , 2007, Forensic science international.
[64] Chung Hyun Park,et al. Using the Developmental Gene Bicoid to Identify Species of Forensically Important Blowflies (Diptera: Calliphoridae) , 2013, BioMed research international.
[65] Jifeng Cai,et al. The availability of 16S rRNA for the identification of forensically important flies (Diptera: Muscidae) in China. , 2010, Tropical biomedicine.
[66] Emmanuel Paradis,et al. pegas: an R package for population genetics with an integrated-modular approach , 2010, Bioinform..
[67] X. Wang,et al. Identification of the forensically important sarcophagid flies Boerttcherisca peregrina, Parasarcophaga albiceps and Parasarcophaga dux (Diptera: Sarcophagidae) based on COII gene in China. , 2010, Tropical biomedicine.
[68] M. Villet,et al. Models of development for blowfly sister species Chrysomya chloropyga and Chrysomya putoria , 2009, Medical and veterinary entomology.
[69] F. Sperling,et al. Molecular phylogeny of Chrysomya albiceps and C. rufifacies (Diptera: Calliphoridae). , 1999, Journal of medical entomology.
[70] I. Joseph,et al. The use of insects in forensic investigations: An overview on the scope of forensic entomology , 2011, Journal of forensic dental sciences.