Finite Difference Schemes for Partial Differential Equations with Weak Solutions and Irregular Coefficients

Abstract A survey of the results concerning the convergence of finite difference schemes for boundary value problems with generalized solutions from the Sobolev space is presented. In particular, difference schemes for some problems with singular coefficients are investigated.

[1]  Petr N. Vabishchevich,et al.  STABILITY AND CONVERGENCE OF TWO-LEVEL DIFFERENCE SCHEMES IN INTEGRAL WITH RESPECT TO TIME NORMS , 1998 .

[2]  Endre Süli,et al.  Convergence of a Finite-Difference Scheme for Second-Order Hyperbolic Equations with Variable Coefficients , 1987 .

[3]  M. J. Wheeler Heat and Mass Transfer , 1968, Nature.

[4]  Boško S. Jovanović The finite difference method for boundary-value problems with weak solutions , 1993 .

[5]  Alexander Zlotnik,et al.  On Superconvergence of a Gradient for Finite Element Methods for an Elliptic Equation with the Nonsmooth Right–hand Side , 2002 .

[6]  Vladimir Maz’ya,et al.  Theory of multipliers in spaces of differentiable functions , 1983 .

[7]  On the convergence of finite-difference schemes for parabolic equations with variable coefficients , 1989 .

[8]  Finite difference approximations of generalized solutions , 1985 .

[9]  Lubin G. Vulkov,et al.  Operator's Approach to the Problems with Concentrated Factors , 2000, NAA.

[10]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[11]  M. Juncosa,et al.  On the Order of Convergence of Solutions of a Difference Equation to a Solution of the Diffusion Equation , 1953 .

[12]  Estimates of the rate of convergence of difference schemes for fourth-order elliptic equations , 1983 .

[13]  Petr N. Vabishchevich,et al.  Difference Schemes with Operator Factors , 2002 .

[14]  Lubin G. Vulkov,et al.  On the convergence of finite difference schemes for the heat equation with concentrated capacity , 2001, Numerische Mathematik.

[15]  On a Nonlocal Boundary-value Problem for Two-dimensional Elliptic Equation , 2001 .

[16]  Boško S. Jovanović,et al.  Convergence Of a Finite Difference Scheme for the Third Boundary-Value Problem for an Elliptic Equation with Variable Coefficients , 2001 .

[17]  Lubin G. Vulkov,et al.  On the Convergence of Difference Schemes for Hyperbolic Problems with Concentrated Data , 2003, SIAM J. Numer. Anal..

[18]  J. H. Bramble,et al.  Bounds for a class of linear functionals with applications to Hermite interpolation , 1971 .

[19]  T. Dupont,et al.  Polynomial approximation of functions in Sobolev spaces , 1980 .

[20]  Bosko S. Jovanovic,et al.  Interpolation Technique and Convergence Rate Estimates for Finite Difference Method , 1996, WNAA.

[21]  Gerd Grubb,et al.  PROBLÉMES AUX LIMITES NON HOMOGÉNES ET APPLICATIONS , 1969 .

[22]  Lubin G. Vulkov,et al.  Construction and Convergence of Difference Schemes for a Model Elliptic Equation with Dirac-delta Function Coefficient , 2000, NAA.