Quantifying global soil carbon losses in response to warming
暂无分享,去创建一个
Bart R. Johnson | L. B. Snoek | T. Crowther | K. Todd-Brown | C. Rowe | W. Wieder | J. Carey | M. B. Machmuller | B. Snoek | S. Fang | G. Zhou | S. Allison | J. Blair | S. Bridgham | A. J. Burton | Y. Carrillo | P. Reich | J. Clark | A. Classen | F. Dijkstra | B. Elberling | B. Emmett | M. Estiarte | S. Frey | J. Guo | J. Harte | L. Jiang | B. Johnson | G. Kröel-Dulay | K. Larsen | H. Laudon | J. Lavallee | Y. Luo | M. Lupascu | L. Ma | S. Marhan | A. Michelsen | J. Mohan | S. Niu | E. Pendall | J. Peñuelas | L. Pfeifer-meister | C. Poll | S. Reinsch | L. Reynolds | I. Schmidt | S. Sistla | N. Sokol | P. Templer | K. Treseder | J. Welker | M. Bradford | Yiqi Luo | S. Niu | S. Fang | Guangsheng Zhou | J. Mohan | A. Burton | Lifen Jiang | Linna Ma | C. Rowe | J. Clark | M. Machmuller | Yiqi Luo | A. Burton | L. Pfeifer‐Meister | Jixun Guo | J. Guo | Jixun Guo | Jocelyn M. Lavallee | Laurel E. Pfeifer‐Meister
[1] W. D. Billings. CARBON BALANCE OF ALASKAN TUNDRA AND TAIGA ECOSYSTEMS: PAST, PRESENT AND FUTURE , 1987 .
[2] D. Jenkinson,et al. Model estimates of CO2 emissions from soil in response to global warming , 1991, Nature.
[3] William A. Stock,et al. Research Synthesis , 1996 .
[4] R. B. Jackson,et al. THE VERTICAL DISTRIBUTION OF SOIL ORGANIC CARBON AND ITS RELATION TO CLIMATE AND VEGETATION , 2000 .
[5] D. Holdstock. Past, present--and future? , 2005, Medicine, conflict, and survival.
[6] R. Lark,et al. Carbon losses from all soils across England and Wales 1978–2003 , 2005, Nature.
[7] E. Davidson,et al. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change , 2006, Nature.
[8] F. Xiong,et al. Warming increases aboveground plant biomass and C stocks in vascular‐plant‐dominated Antarctic tundra , 2008 .
[9] A. Gelman. Scaling regression inputs by dividing by two standard deviations , 2008, Statistics in medicine.
[10] S. Seneviratne,et al. Global Convergence in the Temperature Sensitivity of Respiration at Ecosystem Level , 2010, Science.
[11] M. G. Ryan,et al. Temperature and soil organic matter decomposition rates – synthesis of current knowledge and a way forward , 2011 .
[12] N. Nakicenovic,et al. RCP 8.5—A scenario of comparatively high greenhouse gas emissions , 2011 .
[13] R. Barry,et al. Processes and impacts of Arctic amplification: A research synthesis , 2011 .
[14] K.,et al. Carbon–Concentration and Carbon–Climate Feedbacks in CMIP5 Earth System Models , 2012 .
[15] Marc Macias-Fauria,et al. Eurasian Arctic greening reveals teleconnections and the potential for structurally novel ecosystems , 2012 .
[16] T. Crowther,et al. Thermal acclimation in widespread heterotrophic soil microbes. , 2013, Ecology letters.
[17] Pierre Friedlingstein,et al. Twenty-First-Century Compatible CO2 Emissions and Airborne Fraction Simulated by CMIP5 Earth System Models under Four Representative Concentration Pathways , 2013, Journal of Climate.
[18] W. G. Strand,et al. Climate Change Projections in CESM1(CAM5) Compared to CCSM4 , 2013 .
[19] William R. Wieder,et al. Global soil carbon projections are improved by modelling microbial processes , 2013 .
[20] Hui Li,et al. Responses of ecosystem carbon cycle to experimental warming: a meta-analysis. , 2013, Ecology.
[21] Joshua P. Schimel,et al. Long-term warming restructures Arctic tundra without changing net soil carbon storage , 2013, Nature.
[22] J. Randerson,et al. Changes in soil organic carbon storage predicted by Earth system models during the 21st century , 2013 .
[23] R. Houghton,et al. Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty , 2014 .
[24] G. Heuvelink,et al. SoilGrids1km — Global Soil Information Based on Automated Mapping , 2014, PloS one.
[25] C. Bettigole,et al. Mapping tree density at a global scale , 2015, Nature.
[26] C. Koven,et al. Toward improved model structures for analyzing priming: potential pitfalls of using bulk turnover time , 2015, Global change biology.
[27] P. Ciais,et al. A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[28] Petr Baldrian,et al. Biotic interactions mediate soil microbial feedbacks to climate change , 2015, Proceedings of the National Academy of Sciences.
[29] D. M. Lawrence,et al. Climate change and the permafrost carbon feedback , 2014, Nature.
[30] Pierre Friedlingstein,et al. Controls on terrestrial carbon feedbacks by productivity versus turnover in the CMIP5 Earth System Models , 2015 .
[31] G. Bonan,et al. Managing uncertainty in soil carbon feedbacks to climate change , 2016 .
[32] F. Q. Ribeiro. The meta-analysis , 2017, Brazilian journal of otorhinolaryngology.