Faster Exact Algorithms for Computing Steiner Trees in Higher Dimensional Euclidean Spaces

The Euclidean Steiner tree problem asks for a network of minimum total length interconnecting a finite set of points in d-dimensional space. For d ≥ 3, only one practical algorithmic approach exists for this problem — proposed by Smith in 1992. A number of refinements of Smith’s algorithm have increased the range of solvable problems a little, but it is still infeasible to solve problem instances with more than around 17 terminals. In this paper we firstly propose some additional improvements to Smith’s algorithm. Secondly, we propose a new algorithmic paradigm called branch enumeration. Our experiments show that branch enumeration has similar performance as an optimized version of Smith’s algorithm; furthermore, we argue that branch enumeration has the potential to push the boundary of solvable problems further.

[1]  Ronald L. Graham,et al.  On the history of the Euclidean Steiner tree problem , 2013, Archive for History of Exact Sciences.

[2]  Kurt M. Anstreicher,et al.  Geometric conditions for Euclidean Steiner trees in ℜd , 2013, Comput. Geom..

[3]  ObSteiner: An Exact Algorithm for the Construction of Rectilinear Steiner Minimum Trees in the Presence of Complex Rectilinear Obstacles , 2013, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[4]  Ernst Althaus,et al.  On the Low-Dimensional Steiner Minimum Tree Problem in Hamming Metric , 2011, TAMC.

[5]  Christian Wulff-Nilsen,et al.  A novel approach to phylogenetic trees: d-Dimensional geometric Steiner trees , 2009, Networks.

[6]  Kurt M. Anstreicher,et al.  An improved algorithm for computing Steiner minimal trees in Euclidean d-space , 2008, Discret. Optim..

[7]  J. M. Smith,et al.  Steiner minimal trees, twist angles, and the protein folding problem , 2006, Proteins.

[8]  Nicholas C. Wormald,et al.  Approximations and Lower Bounds for the Length of Minimal Euclidean Steiner Trees , 2006, J. Glob. Optim..

[9]  Warren D. Smith How to find Steiner minimal trees in euclideand-space , 1992, Algorithmica.

[10]  K. Chao,et al.  Steiner Minimal Trees , 2005 .

[11]  D. Cieslik Shortest Connectivity: An Introduction with Applications in Phylogeny , 2004 .

[12]  James MacGregor Smith,et al.  Steiner Trees and 3-D Macromolecular Conformation , 2004, INFORMS J. Comput..

[13]  Martin Zachariasen,et al.  Rectilinear group Steiner trees and applications in VLSI design , 2003, Math. Program..

[14]  Benny K. Nielsen,et al.  An Exact Algorithm for the Uniformly-Oriented Steiner Tree Problem , 2002, ESA.

[15]  Hans Jürgen Prömel,et al.  The Steiner Tree Problem , 2002 .

[16]  Martin Zachariasen,et al.  Obstacle-Avoiding Euclidean Steiner Trees in the Plane: An Exact Algorithm , 1999, ALENEX.

[17]  Martin Zachariasen,et al.  Exact solutions to large-scale plane Steiner tree problems , 1999, SODA '99.

[18]  Martin Zachariasen,et al.  Euclidean Steiner minimum trees: An improved exact algorithm , 1997, Networks.

[19]  Nicholas C. Wormald,et al.  Steiner Trees for Terminals Constrained to Curves , 1997, SIAM J. Discret. Math..

[20]  John E. Beasley,et al.  OR-Library: Distributing Test Problems by Electronic Mail , 1990 .

[21]  Pawel Winter,et al.  An algorithm for the steiner problem in the euclidean plane , 1985, Networks.

[22]  David S. Johnson,et al.  The Complexity of Computing Steiner Minimal Trees , 1977 .

[23]  L. Cavalli-Sforza,et al.  PHYLOGENETIC ANALYSIS: MODELS AND ESTIMATION PROCEDURES , 1967, Evolution; international journal of organic evolution.

[24]  Vojtěch Jarník,et al.  O minimálních grafech, obsahujících $n$ daných bodů , 1934 .