Bearing only FastSLAM using vertical line information from an omnidirectional camera

This paper proposes an implementation of Fast- SLAM for localization and mapping for an indoor environment. The system use only the bearing information retrieved from an omnidirectional camera via vertical line segments which are common in an indoor environment. The real world experiment is also presented using Pioneer-DX3 mobile robot moving in a room with several objects.

[1]  Wolfram Burgard,et al.  A Monte Carlo Algorithm for Multi-Robot Localization , 1999 .

[2]  Yasushi Yagi,et al.  Real-Time Omnidirectional Image Sensors , 2004, International Journal of Computer Vision.

[3]  Shree K. Nayar,et al.  Catadioptric omnidirectional camera , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[4]  Kostas Daniilidis,et al.  Catadioptric camera calibration , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[5]  Ana Cristina Murillo,et al.  Robot and Landmark Localization using Scene Planes and the 1D Trifocal Tensor , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  Hugh F. Durrant-Whyte,et al.  Simultaneous localization and mapping: part I , 2006, IEEE Robotics & Automation Magazine.

[7]  Sebastian Thrun,et al.  FastSLAM: An Efficient Solution to the Simultaneous Localization And Mapping Problem with Unknown Data , 2004 .

[8]  Gregory Dudek,et al.  Cooperative localization and multi-robot exploration , 2003 .

[9]  Lindsay Kleeman,et al.  Interactive SLAM using Laser and Advanced Sonar , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[10]  Hugh Durrant-Whyte,et al.  Simultaneous localization and mapping (SLAM): part II , 2006 .

[11]  Simon Parsons Introduction to Autonomous Mobile Robots by Roland Siegwart and Illah R. Nourbakhsh, MIT Press, 321 pp., $50.00, ISBN 0-262-19502 , 2004, Knowl. Eng. Rev..

[12]  Myung Jin Chung,et al.  SLAM with omni-directional stereo vision sensor , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[13]  Roland Siegwart,et al.  A Toolbox for Easily Calibrating Omnidirectional Cameras , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[14]  Shree K. Nayar,et al.  A Theory of Single-Viewpoint Catadioptric Image Formation , 1999, International Journal of Computer Vision.

[15]  Long Wang,et al.  Cooperative Multi-Robot Monocular-SLAM Using Salient Landmarks , 2009, 2009 International Asia Conference on Informatics in Control, Automation and Robotics.

[16]  Lixin Tang,et al.  Indoor navigation for mobile robots using memorized omni-directional images and robot's motion , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[17]  Tom Duckett,et al.  3D modeling of indoor environments by a mobile robot with a laser scanner and panoramic camera , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[18]  Laurent Delahoche,et al.  Simultaneous localization and map construction method using omnidirectional stereoscopic information , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[19]  Patrick Rives,et al.  Single View Point Omnidirectional Camera Calibration from Planar Grids , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[20]  Shree K. Nayar,et al.  A theory of catadioptric image formation , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[21]  Frederic Maire,et al.  Bearing-Only SLAM with Indistinguishable Landmarks , 2007 .

[22]  Yasushi Yagi,et al.  Panorama scene analysis with conic projection , 1990, EEE International Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications.

[23]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.