Optimization of Spectral Wavelets for Persistence-Based Graph Classification

A graph’s spectral wavelet signature determines a filtration, and consequently an associated set of extended persistence diagrams. We propose a framework that optimises the choice of wavelet for a dataset of graphs, such that their associated persistence diagrams capture features of the graphs that are best suited to a given data science problem. Since the spectral wavelet signature of a graph is derived from its Laplacian, our framework encodes geometric properties of graphs in their associated persistence diagrams and can be applied to graphs without a priori vertex features. We demonstrate how our framework can be coupled with different persistence diagram vectorisation methods for various supervised and unsupervised learning problems, such as graph classification and finding persistence maximising filtrations, respectively. To provide the underlying theoretical foundations, we extend the differentiability result for ordinary persistent homology to extended persistent homology.

[1]  Paul Bendich,et al.  A Fast and Robust Method for Global Topological Functional Optimization , 2020, AISTATS.

[2]  Aaron B. Adcock,et al.  The Ring of Algebraic Functions on Persistence Bar Codes , 2013, 1304.0530.

[3]  S. V. N. Vishwanathan,et al.  Graph kernels , 2007 .

[4]  Oleg Kachan Persistent Homology-based Projection Pursuit , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[5]  Jeffrey J. Sutherland,et al.  Spline-Fitting with a Genetic Algorithm: A Method for Developing Classification Structure-Activity Relationships , 2003, J. Chem. Inf. Comput. Sci..

[6]  Henry Adams,et al.  Persistence Images: A Stable Vector Representation of Persistent Homology , 2015, J. Mach. Learn. Res..

[7]  Hans-Peter Kriegel,et al.  Protein function prediction via graph kernels , 2005, ISMB.

[8]  International Conference on Artificial Intelligence and Statistics, AISTATS 2018, 9-11 April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain , 2018, AISTATS.

[9]  Shang-Liang Chen,et al.  Orthogonal least squares learning algorithm for radial basis function networks , 1991, IEEE Trans. Neural Networks.

[10]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[11]  Bailin Deng,et al.  Regularization of Persistent Homology Gradient Computation , 2020, ArXiv.

[12]  Peter F. Stadler,et al.  Laplacian Eigenvectors of Graphs , 2007 .

[13]  Iasonas Kokkinos,et al.  Scale-invariant heat kernel signatures for non-rigid shape recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[14]  Qi Zhao,et al.  Learning metrics for persistence-based summaries and applications for graph classification , 2019, NeurIPS.

[15]  Xueqi Cheng,et al.  Graph Wavelet Neural Network , 2019, ICLR.

[16]  George Karypis,et al.  Comparison of descriptor spaces for chemical compound retrieval and classification , 2006, Sixth International Conference on Data Mining (ICDM'06).

[17]  Maks Ovsjanikov,et al.  Topological Function Optimization for Continuous Shape Matching , 2018, Comput. Graph. Forum.

[18]  Ryan A. Rossi,et al.  The Network Data Repository with Interactive Graph Analytics and Visualization , 2015, AAAI.

[19]  Peter Bubenik,et al.  Statistical topological data analysis using persistence landscapes , 2012, J. Mach. Learn. Res..

[20]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[21]  Kristian Kersting,et al.  TUDataset: A collection of benchmark datasets for learning with graphs , 2020, ArXiv.

[22]  Ilkay Öksüz,et al.  Explicit topological priors for deep-learning based image segmentation using persistent homology , 2019, IPMI.

[23]  P. Dobson,et al.  Distinguishing enzyme structures from non-enzymes without alignments. , 2003, Journal of molecular biology.

[24]  Jooyoung Park,et al.  Universal Approximation Using Radial-Basis-Function Networks , 1991, Neural Computation.

[25]  Rickard Brüel Gabrielsson,et al.  Topology‐Aware Surface Reconstruction for Point Clouds , 2018, Comput. Graph. Forum.

[26]  H. Edelsbrunner,et al.  Persistent Homology — a Survey , 2022 .

[27]  The 22nd International Conference on Artificial Intelligence and Statistics, AISTATS 2019, 16-18 April 2019, Naha, Okinawa, Japan , 2019, AISTATS.

[28]  Marc Glisse,et al.  A note on stochastic subgradient descent for persistence-based functionals: convergence and practical aspects , 2020, ArXiv.

[29]  David Cohen-Steiner,et al.  Extending Persistence Using Poincaré and Lefschetz Duality , 2009, Found. Comput. Math..

[30]  Chao Chen,et al.  A Topological Regularizer for Classifiers via Persistent Homology , 2019, AISTATS.

[31]  David Cohen-Steiner,et al.  Extending Persistence Using Poincaré and Lefschetz Duality , 2009, Found. Comput. Math..

[32]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[33]  Leonidas J. Guibas,et al.  Stable and Informative Spectral Signatures for Graph Matching , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[34]  Marc Niethammer,et al.  Connectivity-Optimized Representation Learning via Persistent Homology , 2019, ICML.

[35]  U. Feige,et al.  Spectral Graph Theory , 2015 .

[36]  Marc Niethammer,et al.  Graph Filtration Learning , 2019, ICML.

[37]  Geoffrey E. Hinton,et al.  Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition-' Washington , D . C . , June , 1983 OPTIMAL PERCEPTUAL INFERENCE , 2011 .

[38]  Pinar Yanardag,et al.  Deep Graph Kernels , 2015, KDD.

[39]  Sayan Mukherjee,et al.  Fréchet Means for Distributions of Persistence Diagrams , 2012, Discrete & Computational Geometry.

[40]  Dmitriy Drusvyatskiy,et al.  Stochastic Subgradient Method Converges on Tame Functions , 2018, Foundations of Computational Mathematics.

[41]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..

[42]  Andrey Kormilitzin,et al.  A Primer on the Signature Method in Machine Learning , 2016, ArXiv.

[43]  Karsten M. Borgwardt,et al.  A Persistent Weisfeiler-Lehman Procedure for Graph Classification , 2019, ICML.

[44]  Kurt Mehlhorn,et al.  Weisfeiler-Lehman Graph Kernels , 2011, J. Mach. Learn. Res..

[45]  R. Haddad,et al.  Multiresolution Signal Decomposition: Transforms, Subbands, and Wavelets , 1992 .

[46]  Zhi-Li Zhang,et al.  Hunt For The Unique, Stable, Sparse And Fast Feature Learning On Graphs , 2017, NIPS.

[47]  J. Leydold,et al.  Laplacian eigenvectors of graphs : Perron-Frobenius and Faber-Krahn type theorems , 2007 .

[48]  Karsten M. Borgwardt,et al.  Topological Autoencoders , 2019, ICML.

[49]  A. Ben Hamza,et al.  A multiresolution descriptor for deformable 3D shape retrieval , 2013, The Visual Computer.

[50]  A. Debnath,et al.  Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. Correlation with molecular orbital energies and hydrophobicity. , 1991, Journal of medicinal chemistry.

[51]  Michael I. Jordan,et al.  Advances in Neural Information Processing Systems 30 , 1995 .

[52]  Leonidas J. Guibas,et al.  Wavelets on Graphs via Deep Learning , 2013, NIPS.

[53]  Amara Lynn Graps,et al.  An introduction to wavelets , 1995 .

[54]  Yijian Xiang,et al.  RetGK: Graph Kernels based on Return Probabilities of Random Walks , 2018, NeurIPS.

[55]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2007, Discret. Comput. Geom..

[56]  Kurt Mehlhorn,et al.  Efficient graphlet kernels for large graph comparison , 2009, AISTATS.

[57]  Marcio Gameiro,et al.  Continuation of Point Clouds via Persistence Diagrams , 2015, ArXiv.

[58]  Mathieu Carrière,et al.  PersLay: A Neural Network Layer for Persistence Diagrams and New Graph Topological Signatures , 2020, AISTATS.

[59]  Pierre Vandergheynst,et al.  Wavelets on Graphs via Spectral Graph Theory , 2009, ArXiv.

[60]  Steve Oudot,et al.  A Framework for Differential Calculus on Persistence Barcodes , 2019, Foundations of Computational Mathematics.

[61]  Nils M. Kriege,et al.  Subgraph Matching Kernels for Attributed Graphs , 2012, ICML.

[62]  Afra Zomorodian,et al.  Computing Persistent Homology , 2005, Discret. Comput. Geom..

[63]  Dimitris Samaras,et al.  Topology-Preserving Deep Image Segmentation , 2019, NeurIPS.

[64]  Leonidas J. Guibas,et al.  A Topology Layer for Machine Learning , 2019, AISTATS.

[65]  Daniel Cremers,et al.  The wave kernel signature: A quantum mechanical approach to shape analysis , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[66]  Mathias Niepert,et al.  Learning Convolutional Neural Networks for Graphs , 2016, ICML.

[67]  Steve Oudot,et al.  Inverse Problems in Topological Persistence , 2018, Topological Data Analysis.