Weakly Submodular Functions

Submodular functions are well-studied in combinatorial optimization, game theory and economics. The natural diminishing returns property makes them suitable for many applications. We study an extension of monotone submodular functions, which we call {\em weakly submodular functions}. Our extension includes some (mildly) supermodular functions. We show that several natural functions belong to this class and relate our class to some other recent submodular function extensions. We consider the optimization problem of maximizing a weakly submodular function subject to uniform and general matroid constraints. For a uniform matroid constraint, the "standard greedy algorithm" achieves a constant approximation ratio where the constant (experimentally) converges to 5.95 as the cardinality constraint increases. For a general matroid constraint, a simple local search algorithm achieves a constant approximation ratio where the constant (analytically) converges to 10.22 as the rank of the matroid increases.

[1]  Sreenivas Gollapudi,et al.  An axiomatic approach for result diversification , 2009, WWW '09.

[2]  Samir Khuller,et al.  On Finding Dense Subgraphs , 2009, ICALP.

[3]  Vahab Mirrokni,et al.  Maximizing Non-Monotone Submodular Functions , 2007, FOCS 2007.

[4]  Rajmohan Rajaraman,et al.  Analysis of a local search heuristic for facility location problems , 2000, SODA '98.

[5]  Hui Lin,et al.  A Class of Submodular Functions for Document Summarization , 2011, ACL.

[6]  Joseph Naor,et al.  Approximation Algorithms for Diversified Search Ranking , 2010, ICALP.

[7]  Vahab S. Mirrokni,et al.  Maximizing Non-Monotone Submodular Functions , 2011, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[8]  Uriel Feige,et al.  Welfare maximization and the supermodular degree , 2013, ITCS '13.

[9]  Éva Tardos,et al.  Maximizing the Spread of Influence through a Social Network , 2015, Theory Comput..

[10]  Moran Feldman,et al.  Constrained Monotone Function Maximization and the Supermodular Degree , 2014, APPROX-RANDOM.

[11]  Sanjeev Arora,et al.  Inapproximabilty of Densest κ-Subgraph from Average Case Hardness , 2011 .

[12]  Uriel Feige,et al.  The Dense k -Subgraph Problem , 2001, Algorithmica.

[13]  Marcel Wild Weakly submodular rank functions, supermatroids, and the flat lattice of a distributive supermatroid , 2008, Discret. Math..

[14]  Joseph Naor,et al.  Submodular Maximization with Cardinality Constraints , 2014, SODA.

[15]  Yuli Ye,et al.  Max-Sum diversification, monotone submodular functions and dynamic updates , 2012, PODS '12.

[16]  Benjamin E. Birnbaum,et al.  An Improved Analysis for a Greedy Remote-Clique Algorithm Using Factor-Revealing LPs , 2007, Algorithmica.

[17]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[18]  Nicole Immorlica,et al.  A Unifying Hierarchy of Valuations with Complements and Substitutes , 2014, AAAI.

[19]  Vincent Conitzer,et al.  Combinatorial Auctions with k-wise Dependent Valuations , 2005, AAAI.

[20]  Julián Mestre,et al.  Greedy in Approximation Algorithms , 2006, ESA.

[21]  Jon M. Kleinberg,et al.  Segmentation problems , 2004, JACM.

[22]  R. Brualdi Comments on bases in dependence structures , 1969, Bulletin of the Australian Mathematical Society.

[23]  Kumar Chellapilla,et al.  Finding Dense Subgraphs with Size Bounds , 2009, WAW.

[24]  Joseph Naor,et al.  A Tight Linear Time (1/2)-Approximation for Unconstrained Submodular Maximization , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.