The Nature of the Metal-Metal Bond in Bimetallic Surfaces

The formation of a surface metal-metal bond can produce large perturbations in the electronic, chemical, and catalytic properties of a metal. Recent studies indicate that charge transfer is an important component in surface metal-metal bonds that involve dissimilar elements. The larger the charge transfer, the stronger the cohesive energy of the bimetallic bond. On a surface, the formation of a heteronuclear metal-metal bond induces a flow of electron density toward the element with the larger fraction of empty states in its valence band. This behavior is completely contrary to that observed in bulk alloys, indicating that the nature of a heteronuclear metal-metal bond depends strongly on the structural geometry of the bimetallic system.

[1]  D. Goodman,et al.  The effects of CO, H, NH3, CH3OH, H2O, and C2H4 on the electronic properties of ultrathin Cu films supported over Ru(0001): an XPS study , 1991 .

[2]  H. H. Jaffé,et al.  Electronegativity. I. Orbital Electronegativity of Neutral Atoms , 1962 .

[3]  D. Goodman,et al.  Surface chemistry of monolayer metallic films on Re(0001) and Mo(110) , 1990 .

[4]  J. Hrbek Interaction of Mn with the Ru(001) surface and chemisorption of CO on the Mn/Ru(001) interface , 1990 .

[5]  Pötschke Go,et al.  Interface structure and misfit dislocations in thin Cu films on Ru(0001) , 1991 .

[6]  E. Bauer,et al.  Growth, structure and energetics of ultrathin ferromagnetic single crystal films on Mo(110) , 1990 .

[7]  R. E. Watson,et al.  Bonding effects in dilute transition-metal alloys , 1981 .

[8]  C. Peden,et al.  Copper site blocking of hydrogen chemisorption on ruthenium , 1985 .

[9]  A. Ortega,et al.  The adsorption of CO on Pd(100) studied by IR reflection absorption spectroscopy , 1982 .

[10]  J. Paul,et al.  A FT‐IRAS study of the vibrational properties of CO adsorbed on Cu/Ru(001). II. The dispersion of copper , 1987 .

[11]  M. A. Whitehead,et al.  Electronegativity. II. Bond and Orbital Electronegativities , 1963 .

[12]  W. F. Egelhoff Core-level binding-energy shifts at surfaces and in solids , 1987 .

[13]  G. Graham Summary Abstract: Electronic structure of palladium films on tungsten surfaces , 1986 .

[14]  D. Goodman,et al.  IRAS (IR reflection absorption spectroscopy) observations of phase transitions at nickel/molybdenum(110) and cobalt/molybdenum(110) interfaces , 1991 .

[15]  R. E. Watson,et al.  Heats of Formation of Transition-Metal Alloys , 1979 .

[16]  G. A. Somorjai,et al.  The growth and alloy formation of copper on the platinum (111) and stepped (553) crystal surfaces; characterization by Leed, AES, and CO thermal desorption , 1983 .

[17]  R. E. Watson,et al.  Transition metals: d -band hybridization, electronegativities and structural stability of intermetallic compounds , 1978 .

[18]  L. H. Reed,et al.  Bond polarity index: application to group electronegativity , 1992 .

[19]  J. Rodríguez,et al.  Adsorption of carbon monoxide carbon dioxide on clean and cesium-covered copper(110) , 1989 .

[20]  W. Spicer,et al.  Photoemission study of the adsorption of Cu on Pt(111) , 1983 .

[21]  D. Goodman,et al.  Properties of monolayer and multilayer Ni films on the Ru(0001) surface , 1988 .

[22]  G. Wertheim,et al.  Photoemission from surface-atom core levels, surface densities of states, and metal-atom clusters: A unified picture , 1983 .

[23]  J. W. Rogers,et al.  Ultrahigh vacuum and electrochemical CO-characterization studies of Cu ON Ru(0001) , 1988 .

[24]  D. Goodman,et al.  ELECTRONIC INTERACTIONS IN BIMETALLIC SYSTEMS : AN X-RAY PHOTOELECTRON SPECTROSCOPIC STUDY , 1990 .

[25]  D. Goodman,et al.  Infrared vibrational studies of CO adsorption on ultrathin Cu films on a Rh(100) surface , 1990 .

[26]  F. Himpsel,et al.  Photoemission studies of surface core‐level shifts and their applications , 1982 .

[27]  B. Koel,et al.  The adsorption of CO on Pd thin films on Ta(110) , 1990 .

[28]  D. Goodman,et al.  The interaction of ultrathin films of Ni and Pd with W(110): an XPS study , 1990 .

[29]  Gianfranco Pacchioni,et al.  Bond Ionicity in Halogen Silver Interaction , 1988 .

[30]  Strongin,et al.  Morphology and structural phase transitions of Pd monolayers on Ta(110). , 1986, Physical review. B, Condensed matter.

[31]  D. Hamann,et al.  Analysis of Co-Cu bonding by observation of interface states on Cu/Ru bimetallic surfaces , 1987 .

[32]  C. Truong,et al.  Infrared vibrational studies of CO adsorption on Cu/Pt(111) and CuPt(111) surfaces , 1992 .

[33]  D. Goodman,et al.  Electron donor-electron acceptor interactions in bimetallic surfaces: theory and XPS studies , 1991 .

[34]  R. L. Cohen,et al.  Charge transfer in CsCl-structure intermetallic compounds , 1979 .

[35]  L. Pauling The Nature Of The Chemical Bond , 1939 .

[36]  D. Goodman,et al.  Chemisorption of ultrathin Pd layers on W(110) and W(100): a dsorption of H2 and CO , 1988 .

[37]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[38]  C. Truong,et al.  FT-IRAS studies of CO adsorbed on Ag/Pt(111): anomalous behavior of vibrational cross-sections , 1992 .

[39]  D. Goodman,et al.  The adsorption of H2 and CO on strained Ni overlayers on W(110) and W(100) , 1987 .

[40]  C. Park Growth of Ag, Au and Pd on Ru(0001) and CO chemisorption , 1988 .

[41]  J. Hinze,et al.  ELECTRONEGATIVITY: III. ORBITAL ELECTRONEGATIVITIES AND ELECTRON AFFINITIES OF TRANSITION METALS , 1963 .

[42]  Watson,et al.  Linear augmented Slater-type-orbital study of Au-5d-transition-metal alloying. , 1987, Physical review. B, Condensed matter.

[43]  D. Goodman,et al.  An X-ray photoelectron spectroscopic study of the electronic properties of ultrathin Ni films on Ru(0001) and Mo(110) , 1991 .

[44]  R. D. Sole,et al.  Physics of Surfaces , 1992 .

[45]  R. Gomer,et al.  Adsorption of CO on Pd1/W(110) , 1990 .

[46]  W. Spicer,et al.  Electronic structure of different Pt-Cu surfaces , 1983 .

[47]  T. N. Taylor,et al.  Cu adsorption on Pt(111) and its effects on chemisorption: A comparison with electrochemistry , 1985 .

[48]  T. Engel,et al.  In: The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis , 1982 .

[49]  D. Goodman,et al.  Interaction of ultrathin films of Cu with Rh(100) and Ru(0001) : an XPS study , 1991 .

[50]  E. Bauer,et al.  The adsorption of Ni on W (110) and (211) surfaces , 1984 .

[51]  G. Pacchioni,et al.  Ionicity of K chemisorbed on a Cu surface , 1992 .

[52]  D. Goodman,et al.  An AES, LEED, and CO chemisorption study of copper overlayers on Rh(100) , 1991 .

[53]  J. Paul,et al.  A FT–IRAS study of the vibrational properties of CO adsorbed on Cu/Ru(001). I. The structural and electronic properties of Cu , 1987 .

[54]  D. King,et al.  Core-level shift spectroscopy for adsorbates: ionic, covalent or metallic bonding? , 1992 .

[55]  J. Nørskov,et al.  Electrostatic adsorbate-adsorbate interactions: The poisoning and promotion of the molecular adsorption reaction , 1985 .

[56]  C. Campbell Bimetallic Surface Chemistry , 1990 .

[57]  D. Goodman CATALYTIC STUDIES WITH METAL SINGLE CRYSTALS , 1987 .

[58]  Bauer,et al.  Electronic properties of ultrathin nickel films on W(110). , 1990, Physical review. B, Condensed matter.

[59]  J. Niemantsverdriet,et al.  Thermal desorption of strained monoatomic Ag and Au layers from Ru(001) , 1987 .