On the Solar to Hydrogen Conversion Efficiency of Photoelectrodes for Water Splitting.

Reference EPFL-ARTICLE-203195doi:10.1021/jz501716gView record in Web of Science Record created on 2014-11-13, modified on 2017-05-12

[1]  Michael Grätzel,et al.  Cathodic shift in onset potential of solar oxygen evolution on hematite by 13-group oxide overlayers , 2011 .

[2]  H. Gerischer,et al.  Electrochemistry of the Excited Electronic State , 1978 .

[3]  Thomas F. Jaramillo,et al.  Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols , 2010 .

[4]  Jun-Ho Yum,et al.  Examining architectures of photoanode–photovoltaic tandem cells for solar water splitting , 2010 .

[5]  N. Lewis,et al.  Cyclic voltammetry at semiconductor photoelectrodes. 1. Ideal surface-attached redox couples with ideal semiconductor behavior , 1988 .

[6]  K. Sivula,et al.  Photoelectrochemical Tandem Cells for Solar Water Splitting , 2013 .

[7]  A. Rothschild,et al.  Resonant light trapping in ultrathin films for water splitting. , 2013, Nature materials.

[8]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[9]  T. Graule,et al.  Tailoring the morphology of WO3 films with substitutional cation doping: Effect on the photoelectrochemical properties , 2010 .

[10]  Michael Grätzel,et al.  Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes. , 2011, ChemSusChem.

[11]  Nathan S. Lewis,et al.  Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems , 2012 .

[12]  Michael Grätzel,et al.  New Benchmark for Water Photooxidation by Nanostructured α-Fe2O3 Films , 2006 .

[13]  Arthur J. Nozik,et al.  Physical Chemistry of Semiconductor−Liquid Interfaces , 1996 .

[14]  Jan Augustynski,et al.  Highly efficient water splitting by a dual-absorber tandem cell , 2012, Nature Photonics.

[15]  I. Chorkendorff,et al.  Faradaic efficiency of O2 evolution on metal nanoparticle sensitized hematite photoanodes. , 2014, Physical chemistry chemical physics : PCCP.

[16]  Michael Grätzel,et al.  Identifying champion nanostructures for solar water-splitting. , 2013, Nature materials.

[17]  Miro Zeman,et al.  Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode , 2013, Nature Communications.

[18]  G. Hodes Photoelectrochemical Cell Measurements: Getting the Basics Right. , 2012, The journal of physical chemistry letters.

[19]  Pablo Sanchis,et al.  Hydrogen Production From Water Electrolysis: Current Status and Future Trends , 2012, Proceedings of the IEEE.