Did Weierstrass’s differential calculus have a limit-avoiding character? His definition of a limit in ϵ – δ style
暂无分享,去创建一个
[1] C. H. Edwards. The historical development of the calculus , 1979 .
[2] Ronald Calinger,et al. Classics of Mathematics , 1994 .
[3] D. Laugwitz,et al. Bernhard Riemann 1826-1866: Turning Points in the Conception of Mathematics , 1999 .
[4] Problèmes de l'histoire de l'analyse mathématique au XIXème siècle. Cas de karl weierstrass et de Richard Dedekind , 1976 .
[5] Cauchy and the infinitely small , 1978 .
[6] Umberto Bottazzini,et al. The Higher Calculus: A History of Real and Complex Analysis from Euler to Weierstrass , 1986 .
[7] R. E. Bradley,et al. Cauchy’s Cours d’analyse: An Annotated Translation , 2009 .
[8] P. Dugac. Eléments d'analyse de Karl Weierstrass , 1973 .
[9] R. E. Bradley,et al. Cauchy¿s Cours d¿analyse , 2009 .
[10] Detlef Laugwitz. Infinitely small quantities in Cauchy's textbooks , 1987 .
[11] Alexandre Borovik,et al. Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus , 2011, 1108.2885.
[12] Judith V. Grabiner,et al. The origins of Cauchy's rigorous calculus , 1981 .
[13] A. Cauchy. Cours d'analyse de l'École royale polytechnique , 1821 .
[14] Archive for History of Exact Sciences , 1960, Nature.
[15] A. Cauchy. Résumé des leçons données à l'École royale polytechnique, sur le calcul infinitésimal , 2009 .
[16] D. Laugwitz. Bernhard Riemann 1826–1866 , 1996 .
[17] Victor J. Katz,et al. A History of Mathematics: An Introduction , 1998 .
[18] Garrett Birkhoff,et al. A Source Book in Classical Analysis , 1975 .