The Monadic Second-Order Logic of Graphs IV: Definability Properties of Equational Graphs

[1]  J. Büchi Weak Second‐Order Arithmetic and Finite Automata , 1960 .

[2]  M. Rabin Decidability of second-order theories and automata on infinite trees , 1968 .

[3]  M. Rabin Weakly Definable Relations and Special Automata , 1970 .

[4]  M. Rabin Automata on Infinite Objects and Church's Problem , 1972 .

[5]  S. Shelah The monadic theory of order , 1975, 2305.00968.

[6]  Václav Koubek,et al.  Least Fixed Point of a Functor , 1979, J. Comput. Syst. Sci..

[7]  Bruno Courcelle An Axiomatic Approach to the Korenjak-Hopcroft Algorithms , 1981, ICALP.

[8]  Bruno Courcelle,et al.  Fundamental Properties of Infinite Trees , 1983, Theor. Comput. Sci..

[9]  P. Seymour,et al.  Some New Results on the Well-Quasi-Ordering of Graphs , 1984 .

[10]  Bruno Courcelle,et al.  Equivalences and Transformations of Regular Systems-Applications to Recursive Program Schemes and Grammars , 1986, Theor. Comput. Sci..

[11]  Bruno Courcelle An Axiomatic Definition of Context-Free Rewriting and its Application to NLC Graph Grammars , 1987, Theor. Comput. Sci..

[12]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs: Definable Sets of Finite Graphs , 1988, WG.

[13]  Bruno Courcelle,et al.  An Axiomatic Definition of Context-Free Rewriting and its Application to NLC Graph Grammars , 1987, Theor. Comput. Sci..

[14]  Michel Bauderon,et al.  On Systems of Equations Defining Infinite Graphs , 1988, WG.

[15]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[16]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[17]  Bruno Courcelle,et al.  Graph Rewriting: An Algebraic and Logic Approach , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[18]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs V: On Closing the Gap Between Definability and Recognizability , 1991, Theor. Comput. Sci..