Monadic logical definability of nondeterministic linear time
暂无分享,去创建一个
[1] Mihalis Yannakakis,et al. Optimization, approximation, and complexity classes , 1991, STOC '88.
[2] Wolfgang Thomas,et al. Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..
[3] Yuri Gurevich,et al. Toward logic tailored for computational complexity , 1984 .
[4] J. Büchi. Weak Second‐Order Arithmetic and Finite Automata , 1960 .
[5] Neil Immerman,et al. Relational Queries Computable in Polynomial Time , 1986, Inf. Control..
[6] Etienne Grandjean,et al. A Nontrivial Lower Bound for an NP Problem on Automata , 1990, SIAM J. Comput..
[7] Etienne Grandjean. The Spectra of First-Order Sentences and Computational Complexity , 1984, SIAM J. Comput..
[8] Neil Immerman. Languages which capture complexity classes , 1983, STOC '83.
[9] Frédéric Olive,et al. Monadic Logical Definability of NP-Complete Problems , 1994, CSL.
[10] Saharon Shelah,et al. Nearly Linear Time , 1989, Logic at Botik.
[11] Etienne Grandjean. Linear Time Algorithms and NP-Complete Problems , 1992, CSL.
[12] Ronald Fagin. Generalized first-order spectra, and polynomial. time recognizable sets , 1974 .
[13] Neil Immerman,et al. Descriptive and Computational Complexity , 1989, FCT.
[14] Bruno Courcelle,et al. The Expression of Graph Properties and Graph Transformations in Monadic Second-Order Logic , 1997, Handbook of Graph Grammars.
[15] Erich Grädel. On the Notion of Linear Time Computability , 1990, Int. J. Found. Comput. Sci..
[16] Etienne Grandjean. First-Order Spectra with One Variable , 1990, J. Comput. Syst. Sci..
[17] Etienne Grandjean. A Natural NP-Complete Problem with a Nontrivial Lower Nound , 1988, SIAM J. Comput..