Spatial Structure of the Dimeric Transmembrane Domain of the Growth Factor Receptor ErbB2 Presumably Corresponding to the Receptor Active State*

Proper lateral dimerization of the transmembrane domains of receptor tyrosine kinases is required for biochemical signal transduction across the plasma membrane. The spatial structure of the dimeric transmembrane domain of the growth factor receptor ErbB2 embedded into lipid bicelles was obtained by solution NMR, followed by molecular dynamics relaxation in an explicit lipid bilayer. ErbB2 transmembrane segments associate in a right-handed α-helical bundle through the N-terminal tandem GG4-like motif Thr652-X3-Ser656-X3-Gly660, providing an explanation for the pathogenic power of some oncogenic mutations.

[1]  Tony Hunter,et al.  Receptor signaling: When dimerization is not enough , 1999, Current Biology.

[2]  Christian Griesinger,et al.  Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients , 1999 .

[3]  M. Billeter,et al.  MOLMOL: a program for display and analysis of macromolecular structures. , 1996, Journal of molecular graphics.

[4]  M. Lemmon,et al.  The Single Transmembrane Domains of ErbB Receptors Self-associate in Cell Membranes* , 2002, The Journal of Biological Chemistry.

[5]  J. Kyte,et al.  Dimerization of the Extracellular Domain of the Receptor for Epidermal Growth Factor Containing the Membrane-spanning Segment in Response to Treatment with Epidermal Growth Factor* , 1999, The Journal of Biological Chemistry.

[6]  K. Mackenzie Folding and Stability of α-Helical Integral Membrane Proteins , 2006 .

[7]  Cori Bargmann,et al.  Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domain of p185 , 1986, Cell.

[8]  D. Engelman,et al.  Sequence motifs, polar interactions and conformational changes in helical membrane proteins. , 2003, Current opinion in structural biology.

[9]  X. Shu,et al.  Population-based, case-control study of HER2 genetic polymorphism and breast cancer risk. , 2000, Journal of the National Cancer Institute.

[10]  Dieter Langosch,et al.  Interaction of transmembrane helices by a knobs‐into‐holes packing characteristic of soluble coiled coils , 1998, Proteins.

[11]  The transmembrane domain of the oncogenic mutant ErbB-2 receptor: a structure obtained from site-specific infrared dichroism and molecular dynamics. , 2006, Journal of molecular biology.

[12]  Monilola A. Olayioye,et al.  The ErbB signaling network: receptor heterodimerization in development and cancer , 2000, The EMBO journal.

[13]  Sarel J. Fleishman,et al.  A putative molecular-activation switch in the transmembrane domain of erbB2 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[14]  J. Sturgis,et al.  A dimerization hierarchy in the transmembrane domains of the HER receptor family. , 2007, Biochemistry.

[15]  D. Aunis,et al.  Transmembrane peptides as inhibitors of ErbB receptor signaling. , 2004, Molecular biology of the cell.

[16]  A. Arseniev,et al.  From Structure and Dynamics of Protein L7/L12 to Molecular Switching in Ribosome*[boxs] , 2004, Journal of Biological Chemistry.

[17]  J. Thornton,et al.  AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR , 1996, Journal of biomolecular NMR.

[18]  K. Mayo,et al.  Motional Model Analyses of Protein and Peptide Dynamics Using 13C and 15N NMR Relaxation , 1997 .

[19]  Dan Halperin,et al.  Prediction and simulation of motion in pairs of transmembrane alpha-helices , 2007, Bioinform..

[20]  D. Nolde,et al.  Processing of heteronuclear NMR relaxation data with the new software DASHA , 1995 .

[21]  Jack Greenblatt,et al.  Methods for Measurement of Intermolecular NOEs by Multinuclear NMR Spectroscopy: Application to a Bacteriophage λ N-Peptide/boxB RNA Complex , 1997 .

[22]  B. Bormann,et al.  Strong hydrogen bonding interactions involving a buried glutamic acid in the transmembrane sequence of the neu/erbB-2 receptor , 1996, Nature Structural Biology.

[23]  C. Deber,et al.  Polar mutations in membrane proteins as a biophysical basis for disease. , 2002, Biopolymers.

[24]  Steven O. Smith,et al.  Transmembrane interactions in the activation of the Neu receptor tyrosine kinase. , 2002, Biochemistry.

[25]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[26]  Gregory A Caputo,et al.  Supporting Online Material for Computational Design of Peptides That Target Transmembrane Helices , 2007 .

[27]  I. Maruyama,et al.  Activation of preformed EGF receptor dimers by ligand-induced rotation of the transmembrane domain. , 2001, Journal of molecular biology.

[28]  Peter Güntert,et al.  Automated NMR protein structure calculation , 2003 .

[29]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[30]  E. Baker,et al.  Hydrogen bonding in globular proteins. , 1984, Progress in biophysics and molecular biology.

[31]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[32]  H. Kalbitzer,et al.  Protein NMR Spectroscopy. Principles and Practice , 1997 .

[33]  A. Palmer,et al.  Protein NMR Spectroscopy: principles and practice, 2nd ed. , 2006 .

[34]  A. Bax,et al.  Protein backbone angle restraints from searching a database for chemical shift and sequence homology , 1999, Journal of biomolecular NMR.