A differential Game Approach to Evolutionary Equilibrium Selection

The equilibrium selection model of Matsui and Matsuyama (1995), which is based on rational players who maximise their discounted future payoff, is analysed with the help of an associated differential game. Equilibrium selection results are derived for games with a ½-dominant equilibrium, for games with a potential function, and some simple supermodular games.

[1]  Kim C. Border,et al.  Fixed point theorems with applications to economics and game theory: Fixed point theorems for correspondences , 1985 .

[2]  Youngse Kim,et al.  Equilibrium Selection inn-Person Coordination Games , 1996 .

[3]  Daisuke Oyama p-Dominance and Equilibrium Selection under Perfect Foresight Dynamics , 2002, J. Econ. Theory.

[4]  Glenn Ellison Basins of Attraction, Long-Run Stochastic Stability, and the Speed of Step-by-Step Evolution , 2000 .

[5]  Josef Hofbauer,et al.  The spatially dominant equilibrium of a game , 1999, Ann. Oper. Res..

[6]  Lawrence E. Blume,et al.  Evolutionary Equilibrium with Forward-Looking Players , 1995 .

[7]  John C. Harsanyi,et al.  Общая теория выбора равновесия в играх / A General Theory of Equilibrium Selection in Games , 1989 .

[8]  Unique solutions for strategic games , 1989 .

[9]  H. Carlsson,et al.  Global Games and Equilibrium Selection , 1993 .

[10]  S. Morris,et al.  Global Games: Theory and Applications , 2001 .

[11]  Takashi Ui,et al.  Robust Equilibria of Potential Games , 2001 .

[12]  H. Peyton Young,et al.  Individual Strategy and Social Structure , 2020 .

[13]  Kiminori Matsuyama,et al.  An Approach to Equilibrium Selection , 1995 .

[14]  H. Carlsson,et al.  Equilibrium selection in stag hunt games , 1993 .

[15]  Kim C. Border,et al.  Infinite Dimensional Analysis: A Hitchhiker’s Guide , 1994 .

[16]  Josef Hofbauer,et al.  The theory of evolution and dynamical systems , 1988 .

[17]  L. Shapley,et al.  Potential Games , 1994 .

[18]  Kim C. Border,et al.  Infinite dimensional analysis , 1994 .

[19]  Toshimasa Maruta,et al.  On the Relationship Between Risk-Dominance and Stochastic Stability , 1997 .

[20]  R. Selten An axiomatic theory of a risk dominance measure for bipolar games with linear incentives , 1995 .

[21]  L. Shapley,et al.  REGULAR ARTICLEPotential Games , 1996 .

[22]  Knut Sydsæter,et al.  Optimal control theory with economic applications , 1987 .

[23]  Josef Hofbauer,et al.  Perfect Foresight and Equilibrium Selection in Symmetric Potential Games , 1998 .

[24]  H. Young,et al.  Individual Strategy and Social Structure: An Evolutionary Theory of Institutions , 1999 .