Characterisation of the polarisations in osmotic distillation of glucose solutions in hollow fibre module

Abstract This paper quantifies the characteristics of concentration and temperature polarisations in osmotic distillation of glucose solutions in hollow fibre module using PVDF fibres, being PV375 and PV660 for low and high feed concentration range respectively. Concentration polarisation on the brine side was found to be more severe than on the feed side with concentration differences being up to 3.17% on the brine side and 1.43% on the feed side. Temperature polarisation, however, was more intensive on the brine side for lower feed concentration range, but less intensive when dealing with higher feed concentration. Under the reported experimental conditions, the temperature differences across the membrane were up to 1.53 °C in module PV375, and 1.33 °C in module PV660. Overall, concentration and temperature polarisations were found to contribute up to 18% to OD flux reduction.

[1]  F. Banat,et al.  Modeling of Desalination Using Tubular Direct Contact Membrane Distillation Modules , 1999 .

[2]  Anthony G. Fane,et al.  Gas and vapour transport through microporous membranes. II. Membrane distillation , 1990 .

[3]  J. Mengual,et al.  Osmotic distillation through porous hydrophobic membranes , 1993 .

[4]  M. Joachim,et al.  Prediction of water activity of glucose and calcium chloride solutions , 2003 .

[5]  V. Chen,et al.  Shell-side mass transfer performance of randomly packed hollow fiber modules , 2000 .

[6]  M. C. García-Payo,et al.  Air gap membrane distillation of sucrose aqueous solutions , 1999 .

[7]  C. Gostoli,et al.  Thermal effects in osmotic distillation , 1999 .

[8]  C. Geankoplis Transport processes and unit operations , 1978 .

[9]  K. Sirkar,et al.  Dispersion‐free solvent extraction with microporous hollow‐fiber modules , 1988 .

[10]  A. Fane,et al.  The effect of shell side hydrodynamics on the performance of axial flow hollow fibre modules , 1993 .

[11]  M. C. García-Payo,et al.  Direct Contact Membrane Distillation of Sugar Aqueous Solutions , 1999 .

[12]  M. Nguyen,et al.  Prediction of viscosity of glucose and calcium chloride solutions , 2004 .

[13]  Dennis R. Heldman,et al.  Food process engineering , 1975 .

[14]  Ming-Chien Yang,et al.  Designing hollow‐fiber contactors , 1986 .

[15]  G. Glenn Lipscomb,et al.  Effect of shell‐side flows on hollow‐fiber membrane device performance , 1995 .

[16]  Anthony G. Fane,et al.  Gas and vapour transport through microporous membranes. I. Knudsen-Poiseuille transition , 1990 .

[17]  R. Field,et al.  Mass transfer performance for hollow fibre modules with shell-side axial feed flow: using an engineering approach to develop a framework , 2001 .

[18]  M. C. García-Payo,et al.  Gas permeation and direct contact membrane distillation experiments and their analysis using different models , 2002 .

[19]  E. A. Mason,et al.  Gas Transport in Porous Media: The Dusty-Gas Model , 1983 .

[20]  R. Gawroński Kinetics of solvent extraction in hollow-fiber contactors , 2000 .

[21]  C. Geankoplis Transport processes : momentum, heat and mass , 1983 .

[22]  V. A. Bui,et al.  A laboratory study on glucose concentration by osmotic distillation in hollow fibre module , 2004 .

[23]  R. A. Johnson,et al.  A new option : Osmotic distillation , 1998 .

[24]  L. Martinez-diez,et al.  Study of Polarization Phenomena in Membrane Distillation of Aqueous Salt Solutions , 2000 .

[25]  R. Johnson,et al.  Mass and heat transfer mechanisms in the osmotic distillation process , 1991 .