Tunable reflecting terahertz filter based on chirped metamaterial structure

Tunable reflecting terahertz bandstop filter based on chirped metamaterial structure is demonstrated by numerical simulation. In the metamaterial, the metal bars are concatenated to silicon bars with different lengths. By varying the conductivity of the silicon bars, the reflectivity, central frequency and bandwidth of the metamaterial could be tuned. Light illumination could be introduced to change the conductivity of the silicon bars. Numerical simulations also show that the chirped metamaterial structure is insensitive to the incident angle and polarization-dependent. The proposed chirped metamaterial structure can be operated as a tunable bandstop filter whose modulation depth, bandwidth, shape factor and center frequency can be controlled by light pumping.

[1]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[2]  Willie J Padilla,et al.  Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices. , 2007, Optics letters.

[3]  T. Cui,et al.  A broadband terahertz absorber using multi-layer stacked bars , 2015 .

[4]  Nikolay I. Zheludev,et al.  Reconfigurable photonic metamaterials , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[5]  Ata Khalid,et al.  Polarization insensitive, broadband terahertz metamaterial absorber. , 2011, Optics letters.

[6]  Igal Brener,et al.  Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. , 2008, Optics express.

[7]  Willie J Padilla,et al.  Recent Progress in Electromagnetic Metamaterial Devices for Terahertz Applications , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[8]  J. O’Hara,et al.  An approach for mechanically tunable, dynamic terahertz bandstop filters , 2012 .

[9]  Zhongyang Li,et al.  Terahertz Broadband-Stop Filters , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[10]  Houtong Chen Interference theory of metamaterial perfect absorbers. , 2011, Optics Express.

[11]  Wai Lam Chan,et al.  Imaging with terahertz radiation , 2007 .

[12]  Ranjan Singh,et al.  Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates. , 2011, Optics letters.

[13]  Willie J Padilla,et al.  Metamaterial Electromagnetic Wave Absorbers , 2012, Advanced materials.

[14]  Abul K. Azad,et al.  Experimental demonstration of frequency-agile terahertz metamaterials , 2008 .

[15]  Ozgur Aktas,et al.  Continuously tunable terahertz metamaterial employing magnetically actuated cantilevers. , 2011, Optics express.

[16]  Willie J Padilla,et al.  A metamaterial absorber for the terahertz regime: design, fabrication and characterization. , 2008, Optics express.

[17]  Wei Wang,et al.  Active plasmonic band-stop filters based on graphene metamaterial at THz wavelengths. , 2016, Optics express.

[18]  Eleftherios N. Economou,et al.  Broadband blueshift tunable metamaterials and dual-band switches , 2009 .

[19]  Mingzhi Lu,et al.  Second-order bandpass terahertz filter achieved by multilayer complementary metamaterial structures. , 2011, Optics letters.

[20]  Metamaterial terahertz switch based on split-ring resonator embedded with photoconductive silicon. , 2015, Applied optics.

[21]  Xiao Liang,et al.  Electrically tunable negative permeability metamaterials based on nematic liquid crystals , 2007 .

[22]  Abul K. Azad,et al.  Manipulation of terahertz radiation using metamaterials , 2011 .

[23]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[24]  Willie J Padilla,et al.  Dynamical electric and magnetic metamaterial response at terahertz frequencies , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[25]  Guo-Qiang Lo,et al.  A Micromachined Reconfigurable Metamaterial via Reconfiguration of Asymmetric Split‐Ring Resonators , 2011 .

[26]  Subash Vegesna,et al.  Terahertz bandpass filters using double-stacked metamaterial layers. , 2012, Optics letters.

[27]  D. Weinstein,et al.  Mechanical Coupling of 2D Resonator Arrays for MEMS Filter Applications , 2007, 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum.

[28]  Tie Jun Cui,et al.  Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation , 2012 .

[29]  S. Maier,et al.  Active control of electromagnetically induced transparency analogue in terahertz metamaterials , 2012, Nature Communications.

[30]  Wai Lam Chan,et al.  A spatial light modulator for terahertz beams , 2009 .

[31]  Jingjun Xu,et al.  Tunable Band-Stop Filters for Graphene Plasmons Based on Periodically Modulated Graphene , 2016, Scientific Reports.

[32]  Dieter K. Schroder,et al.  Carrier lifetimes in silicon , 1997 .

[33]  Willie J Padilla,et al.  A metamaterial solid-state terahertz phase modulator , 2009 .

[34]  J. Federici,et al.  Review of terahertz and subterahertz wireless communications , 2010 .

[35]  N. Zheludev,et al.  From metamaterials to metadevices. , 2012, Nature materials.

[36]  M. Lipson,et al.  All-optical control of light on a silicon chip , 2004, Nature.

[37]  Ekmel Ozbay,et al.  Optically implemented broadband blueshift switch in the terahertz regime. , 2011, Physical review letters.

[38]  Willie J Padilla,et al.  Active terahertz metamaterial devices , 2006, Nature.

[39]  D. Kwong,et al.  Dynamic metasurface for broadband electromagnetic modulator in reflection , 2016, 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS).

[40]  David M. Fried,et al.  THE DESIGN, FABRICATION AND CHARACTERIZATION OF , 2004 .