SMALL-TIME ASYMPTOTICS FOR FAST MEAN-REVERTING STOCHASTIC VOLATILITY MODELS

In this paper, we study stochastic volatility models in regimes where the maturity is small, but large compared to the mean-reversion time of the stochastic volatility factor. The problem falls in the class of averaging/homogenization problems for nonlinear HJB-type equations where the "fast variable" lives in a noncompact space. We develop a general argument based on viscosity solutions which we apply to the two regimes studied in the paper. We derive a large deviation principle, and we deduce asymptotic prices for out-of-the-money call and put options, and their corresponding implied volatilities. The results of this paper generalize the ones obtained in Feng, Forde and Fouque [SIAM J. Financial Math. 1 (2010) 126-141] by a moment generating function computation in the particular case of the Heston model.

[1]  A. Dembo,et al.  Large Deviation Techniques and Applications. , 1994 .

[2]  Peter K. Friz,et al.  Application of large deviation methods to the pricing of index options in finance , 2003 .

[3]  J. D. Biggins,et al.  Large Deviation Techniques, and Applications , 1994 .

[4]  P. Hagan,et al.  MANAGING SMILE RISK , 2002 .

[5]  Henri Berestycki,et al.  Asymptotics and calibration of local volatility models , 2002 .

[6]  Jin Feng,et al.  Short-Maturity Asymptotics for a Fast Mean-Reverting Heston Stochastic Volatility Model , 2010, SIAM J. Financial Math..

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[9]  G. Papanicolaou,et al.  Derivatives in Financial Markets with Stochastic Volatility , 2000 .

[10]  T. Kurtz,et al.  Large Deviations for Stochastic Processes , 2006 .

[11]  A. Jacquier,et al.  SMALL-TIME ASYMPTOTICS FOR IMPLIED VOLATILITY UNDER THE HESTON MODEL , 2009 .

[12]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[13]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[14]  B. LeBaron,et al.  Stochastic volatility as a simple generator of apparent financial power laws and long memory , 2001 .

[15]  D. Stroock An Introduction to the Theory of Large Deviations , 1984 .

[16]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[17]  Ronnie Sircar,et al.  Multiscale Stochastic Volatility Asymptotics , 2003, Multiscale Model. Simul..

[18]  Martino Bardi,et al.  Convergence by Viscosity Methods in Multiscale Financial Models with Stochastic Volatility , 2010, SIAM J. Financial Math..

[19]  P. Donnelly MARKOV PROCESSES Characterization and Convergence (Wiley Series in Probability and Mathematical Statistics) , 1987 .

[20]  P. Henry-Labordère Analysis, Geometry, and Modeling in Finance: Advanced Methods in Option Pricing , 2008 .

[21]  Jean-Philippe Bouchaud,et al.  Multiple Time Scales in Volatility and Leverage Correlations: An Stochastic Volatility Model , 2003, cond-mat/0302095.

[22]  Tosio Kato Perturbation theory for linear operators , 1966 .

[23]  P. Priouret,et al.  An introduction to the theory of large deviations , 1986 .

[24]  W. Fleming,et al.  Controlled Markov processes and viscosity solutions , 1992 .

[25]  Marion Kee,et al.  Analysis , 2004, Machine Translation.

[26]  P. Henry-Labordère A General Asymptotic Implied Volatility for Stochastic Volatility Models , 2005, cond-mat/0504317.

[27]  S. Meyn,et al.  Large Deviations Asymptotics and the Spectral Theory of Multiplicatively Regular Markov Processes , 2005, math/0509310.

[28]  C. Houdr'e,et al.  Third-order short-time expansions for close-to-the-money option prices under the CGMY model , 2013, 1305.4719.

[29]  Jim Gatheral The Volatility Surface: A Practitioner's Guide , 2006 .

[30]  Jin Feng Martingale problems for large deviations of Markov processes , 1999 .

[31]  F. Knight Essentials of Brownian Motion and Diffusion , 1981 .

[32]  Konstantinos Spiliopoulos,et al.  Maximum likelihood estimation for small noise multiscale diffusions , 2013, 1301.6413.

[33]  S. Karlin,et al.  A second course in stochastic processes , 1981 .

[34]  J. Doob Stochastic processes , 1953 .

[35]  M. Forde Tail asymptotics for diffusion processes, with applications to local volatility and CEV-Heston models , 2006, math/0608634.

[36]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[37]  Alan L. Lewis Option Valuation under Stochastic Volatility , 2000 .

[38]  H. Berestycki,et al.  Computing the implied volatility in stochastic volatility models , 2004 .