Hub-based Simulation and Graphics Hardware Accelerated Visualization for Nanotechnology Applications

The Network for computational nanotechnology (NCN) has developed a science gateway at nanoHUB.org for nanotechnology education and research. Remote users can browse through online seminars and courses, and launch sophisticated nanotechnology simulation tools, all within their Web browser. Simulations are supported by a middleware that can route complex jobs to grid supercomputing resources. But what is truly unique about the middleware is the way that it uses hardware accelerated graphics to support both problem setup and result visualization. This paper describes the design and integration of a remote visualization framework into the nanoHUB for interactive visual analytics of nanotechnology simulations. Our services flexibly handle a variety of nanoscience simulations, render them utilizing graphics hardware acceleration in a scalable manner, and deliver them seamlessly through the middleware to the user. Rendering is done only on-demand, as needed, so each graphics hardware unit can simultaneously support many user sessions. Additionally, a novel node distribution scheme further improves our system's scalability. Our approach is not only efficient but also cost-effective. Only half-dozen render nodes are anticipated to support hundreds of active tool sessions on the nanoHUB. Moreover, this architecture and visual analytics environment provides capabilities that can serve many areas of scientific simulation and analysis beyond nanotechnology with its ability to interactively analyze and visualize multivariate scalar and vector fields

[1]  J. van Wijk,et al.  Spot noise texture synthesis for data visualization , 1991, SIGGRAPH.

[2]  Eric Martz,et al.  Protein Explorer: easy yet powerful macromolecular visualization. , 2002, Trends in biochemical sciences.

[3]  Mark Segal,et al.  The OpenGL Graphics System: A Specification , 2004 .

[4]  Rüdiger Westermann,et al.  Efficiently using graphics hardware in volume rendering applications , 1998, SIGGRAPH.

[5]  Dana H. Brooks,et al.  SCIRun/BioPSE: integrated problem solving environment for bioelectric field problems and visualization , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[6]  Peter Shirley,et al.  A polygonal approximation to direct scalar volume rendering , 1990, SIGGRAPH 1990.

[7]  Thomas Ertl,et al.  A Framework for Interactive Hardware Accelerated Remote 3D-Visualization , 2000 .

[8]  Bob Francis,et al.  Silicon Graphics Inc. , 1993 .

[9]  Andy Hopper,et al.  Virtual Network Computing , 1998, IEEE Internet Comput..

[10]  Yoseph Imry,et al.  Quantum Interference and the Aharonov-Bohm Effect , 1989 .

[11]  Kwan-Liu Ma,et al.  A PC cluster system for simultaneous interactive volumetric modeling and visualization , 2003, IEEE Symposium on Parallel and Large-Data Visualization and Graphics, 2003. PVG 2003..

[12]  Gordon Erlebacher,et al.  Lagrangian-Eulerian Advection of Noise and Dye Textures for Unsteady Flow Visualization , 2002, IEEE Trans. Vis. Comput. Graph..

[13]  Thomas Ertl,et al.  A Framework for Interactive Hardware Accelerated Remote 3D-Visualization , 2000, VisSym.

[14]  Simon Stegmaier,et al.  A Generic Solution for Hardware-Accelerated Remote Visualization , 2002, VisSym.

[15]  Jian Huang,et al.  Distributed data management for large volume visualization , 2005, VIS 05. IEEE Visualization, 2005..

[16]  Martin Kraus,et al.  Hardware-accelerated volume and isosurface rendering based on cell-projection , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[17]  Alexandru Telea,et al.  3D IBFV: hardware-accelerated 3D flow visualization , 2003, IEEE Visualization, 2003. VIS 2003..

[18]  Hans Hagen,et al.  Streamball techniques for flow visualization , 1994, Proceedings Visualization '94.

[19]  Nelson Max,et al.  Flow visualization using moving textures , 1995 .

[20]  Gerhard Klimeck,et al.  3-D atomistic nanoelectronic modeling on high performance clusters: multimillion atom simulations , 2002 .

[21]  Kwan-Liu Ma,et al.  Efficient Streamline, Streamribbon, and Streamtube Constructions on Unstructured Grids , 1996, IEEE Trans. Vis. Comput. Graph..

[22]  Hans-Peter Seidel,et al.  Applications of pixel textures in visualization and realistic image synthesis , 1999, SI3D.

[23]  C. Anfinsen Principles that govern the folding of protein chains. , 1973, Science.

[24]  P. Shirley,et al.  A polygonal approximation to direct scalar volume rendering , 1990, VVS.

[25]  Gordon Erlebacher,et al.  A texture-based framework for spacetime-coherent visualization of time-dependent vector fields , 2003, IEEE Visualization, 2003. VIS 2003..

[26]  Bill Hibbard,et al.  VisAD: connecting people to computations and people to people , 1998, COMG.

[27]  Samat Suhana Virtual Network Computing (VNC) Using Java , 2005 .

[28]  Kwan-Liu Ma,et al.  High Performance Visualization of Time-Varying Volume Data over a Wide-Area Network , 2000, ACM/IEEE SC 2000 Conference (SC'00).

[29]  Nelson L. Max,et al.  A contract based system for large data visualization , 2005, VIS 05. IEEE Visualization, 2005..

[30]  ERHARD,et al.  3-D atomistic nanoelectronic modeling on high performance clusters : multimillion atom simulations , .

[31]  Brian Cabral,et al.  Imaging vector fields using line integral convolution , 1993, SIGGRAPH.

[32]  Mohamed Sayeed,et al.  Large Scale Simulations in Nanostructures with NEMO3-D on Linux Clusters , 2005 .

[33]  Charles D. Hansen,et al.  Semotus Visum: a flexible remote visualization framework , 2002, IEEE Visualization, 2002. VIS 2002..

[34]  Amitabh Varshney,et al.  Computing and Displaying Intermolecular Negative Volume for Docking , 2006 .

[35]  David S. Ebert,et al.  VolQD: direct volume rendering of multi-million atom quantum dot simulations , 2005, VIS 05. IEEE Visualization, 2005..

[36]  Datta,et al.  Voltage drop in mesoscopic systems: A numerical study using a quantum kinetic equation. , 1991, Physical review. B, Condensed matter.

[37]  Greg Humphreys,et al.  Chromium: a stream-processing framework for interactive rendering on clusters , 2002, SIGGRAPH.

[38]  Andreas Kolb,et al.  Hardware-based simulation and collision detection for large particle systems , 2004, Graphics Hardware.

[39]  Rüdiger Westermann,et al.  A particle system for interactive visualization of 3D flows , 2005, IEEE Transactions on Visualization and Computer Graphics.

[40]  Kensuke Kobayashi,et al.  Tuning of the Fano effect through a quantum dot in an Aharonov-Bohm interferometer. , 2002, Physical review letters.

[41]  Gordon Erlebacher,et al.  Hardware-accelerated texture advection for unsteady flow visualization , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[42]  Datta,et al.  Anomalous Rxx in the quantum Hall regime due to impurity-bound states. , 1991, Physical review. B, Condensed matter.

[43]  Theo van Walsum,et al.  Particle Tracing Algorithms for 3D Curvilinear Grids , 1994, Scientific Visualization.

[44]  Hans-Christian Hege,et al.  Visualization of time-dependent remote adaptive mesh refinement data , 2005, VIS 05. IEEE Visualization, 2005..

[45]  Matthias Zwicker,et al.  Ieee Transactions on Visualization and Computer Graphics Ewa Splatting , 2002 .

[46]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[47]  Brian Cabral,et al.  Accelerated volume rendering and tomographic reconstruction using texture mapping hardware , 1994, VVS '94.

[48]  Jeff P. Hultquist,et al.  Constructing stream surfaces in steady 3D vector fields , 1992, Proceedings Visualization '92.