Positivity in the Grothendieck group of complex flag varieties

Abstract We prove a conjecture of A.S. Buch concerning the structure constants of the Grothendieck ring of a flag variety with respect to its basis of Schubert structure sheaves. For this, we show that the coefficients in this basis of the structure sheaf of any subvariety with rational singularities have alternating signs. Equivalently, the class of the dualizing sheaf of such a subvariety is a nonnegative combination of classes of dualizing sheaves of Schubert varieties.

[1]  Positivity in equivariant Schubert calculus , 1999, math/9908172.

[2]  B. Kostant,et al.  T-equivariant K-theory of generalized flag varieties , 1987 .

[3]  A. Ramanathan Schubert varieties are arithmetically Cohen-Macaulay , 1985 .

[4]  David Mumford,et al.  Toroidal Embeddings I , 1973 .

[5]  Alain Lascoux,et al.  A Pieri formula in the Grothendieck ring of a flag bundle , 1994 .

[6]  Santhosh K. P. Kumar,et al.  T-equivariant K-theory of generalized flag varieties. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[7]  O. Mathieu Positivity of some intersections in K0(G/B)☆ , 2000 .

[8]  R. Richardson Intersections of double cosets in algebraic groups , 1992 .

[9]  William Fulton,et al.  Schubert varieties and degeneracy loci , 1998 .

[10]  C. S. Seshadri,et al.  A Pieri-Chevalley Type Formula for K (G/B) and Standard Monomial Theory , 2003 .

[11]  Anders Skovsted Buch A Littlewood-Richardson rule for theK-theory of Grassmannians , 2000 .

[12]  Steven L. Kleiman,et al.  The transversality of a general translate , 1974 .

[13]  N. Lauritzen The Euler characteristic of a homogeneous line bundle , 1992 .

[14]  Hans Grauert,et al.  Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen , 1970 .

[15]  R. Marlin Anneaux de Grothendieck des variétés de drapeaux , 1976 .

[16]  A. Ramanathan Equations defining schubert varieties and frobenius splitting of diagonals , 1987 .