Window-based data parallelization in complex event processing

15

[1]  M. Tamer Özsu,et al.  Adaptive input admission and management for parallel stream processing , 2013, DEBS.

[2]  Rajkumar Buyya,et al.  Cost of Virtual Machine Live Migration in Clouds: A Performance Evaluation , 2009, CloudCom.

[3]  Ramakrishna Varadarajan,et al.  The Vertica Analytic Database: C-Store 7 Years Later , 2012, Proc. VLDB Endow..

[4]  Scott Shenker,et al.  Discretized Streams: An Efficient and Fault-Tolerant Model for Stream Processing on Large Clusters , 2012, HotCloud.

[5]  Gabriele Mencagli A Game-Theoretic Approach for Elastic Distributed Data Stream Processing , 2016, TAAS.

[6]  Kurt Rothermel,et al.  Supporting Strong Reliability for Distributed Complex Event Processing Systems , 2011, 2011 IEEE International Conference on High Performance Computing and Communications.

[7]  Holger Ziekow,et al.  The DEBS 2014 grand challenge , 2014, DEBS '14.

[8]  Armin Zimmermann,et al.  Flexible On-Board Stream Processing for Automotive Sensor Data , 2010, IEEE Transactions on Industrial Informatics.

[9]  Kurt Rothermel,et al.  Moving range queries in distributed complex event processing , 2012, DEBS.

[10]  Matthias Weidlich,et al.  Discovery and Validation of Queueing Networks in Scheduled Processes , 2015, CAiSE.

[11]  Björn Schilling,et al.  Efficient and secure event correlation in heterogeneous environments , 2015 .

[12]  Assaf Schuster,et al.  Lazy evaluation methods for detecting complex events , 2015, DEBS.

[13]  Nathan Kallus,et al.  Predicting crowd behavior with big public data , 2014, WWW.

[14]  Kurt Rothermel,et al.  Minimizing Communication Overhead in Window-Based Parallel Complex Event Processing , 2017, DEBS.

[15]  Matthias Weidlich,et al.  Queue mining for delay prediction in multi-class service processes , 2015, Inf. Syst..

[16]  Dominic Battré,et al.  Nephele/PACTs: a programming model and execution framework for web-scale analytical processing , 2010, SoCC '10.

[17]  Ruben Mayer,et al.  Demo Abstract: Fog Computing for Improving User Application Interaction and Context Awareness , 2017, 2017 IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation (IoTDI).

[18]  Imrich Chlamtac,et al.  Internet of things: Vision, applications and research challenges , 2012, Ad Hoc Networks.

[19]  Kun-Lung Wu,et al.  Elastic scaling of data parallel operators in stream processing , 2009, 2009 IEEE International Symposium on Parallel & Distributed Processing.

[20]  Odej Kao,et al.  Elastic Stream Processing with Latency Guarantees , 2015, 2015 IEEE 35th International Conference on Distributed Computing Systems.

[21]  Hari Balakrishnan,et al.  Choreo: network-aware task placement for cloud applications , 2013, Internet Measurement Conference.

[22]  Alessandro Margara,et al.  Complex event processing with T-REX , 2012, J. Syst. Softw..

[23]  Rajeev Motwani,et al.  Operator scheduling in data stream systems , 2004, VLDB 2004.

[24]  Beate Ottenwälder,et al.  Mobility-awareness in complex event processing systems , 2016 .

[25]  Andrey Brito,et al.  Scalable and elastic realtime click stream analysis using StreamMine3G , 2014, DEBS '14.

[26]  Martin Hirzel,et al.  Partition and compose: parallel complex event processing , 2012, DEBS.

[27]  Michael Stonebraker,et al.  Operator Scheduling in a Data Stream Manager , 2003, VLDB.

[28]  Kurt Rothermel,et al.  Predictable Low-Latency Event Detection With Parallel Complex Event Processing , 2015, IEEE Internet of Things Journal.

[29]  Shlomo Zilberstein,et al.  Using Anytime Algorithms in Intelligent Systems , 1996, AI Mag..

[30]  Tiziano De Matteis,et al.  Keep calm and react with foresight: strategies for low-latency and energy-efficient elastic data stream processing , 2016, PPoPP.

[31]  Peter R. Pietzuch,et al.  Distributed complex event processing with query rewriting , 2009, DEBS '09.

[32]  Sam Toueg,et al.  Unreliable failure detectors for reliable distributed systems , 1996, JACM.

[33]  Vincenzo Grassi,et al.  Optimal Operator Replication and Placement for Distributed Stream Processing Systems , 2017, PERV.

[34]  J. Le Boudec,et al.  Adaptive load sharing for network processors , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[35]  Ruben Mayer,et al.  EmuFog: Extensible and scalable emulation of large-scale fog computing infrastructures , 2017, 2017 IEEE Fog World Congress (FWC).

[36]  Rajkumar Buyya,et al.  Article in Press Future Generation Computer Systems ( ) – Future Generation Computer Systems Cloud Computing and Emerging It Platforms: Vision, Hype, and Reality for Delivering Computing as the 5th Utility , 2022 .

[37]  Alexander Artikis,et al.  Event Forecasting with Pattern Markov Chains , 2017, DEBS.

[38]  Rudolf Hornig,et al.  An overview of the OMNeT++ simulation environment , 2008, Simutools 2008.

[39]  Frank Dürr,et al.  Solving the Multi-Operator Placement Problem in Large-Scale Operator Networks , 2010, 2010 Proceedings of 19th International Conference on Computer Communications and Networks.

[40]  Owen Rambow,et al.  Sentiment Analysis of Twitter Data , 2011 .

[41]  Michael Philippsen,et al.  Adaptive Speculative Processing of Out-of-Order Event Streams , 2014, TOIT.

[42]  Alexander L. Wolf,et al.  SABER: Window-Based Hybrid Stream Processing for Heterogeneous Architectures , 2016, SIGMOD Conference.

[43]  Ruben Mayer,et al.  The Fog Makes Sense: Enabling Social Sensing Services with Limited Internet Connectivity , 2017, SocialSens@CPSWeek.

[44]  Randy H. Katz,et al.  A view of cloud computing , 2010, CACM.

[45]  Alessandro Margara,et al.  Processing flows of information: From data stream to complex event processing , 2012, CSUR.

[46]  Navendu Jain,et al.  Design, implementation, and evaluation of the linear road bnchmark on the stream processing core , 2006, SIGMOD Conference.

[47]  Fred B. Schneider,et al.  Implementing fault-tolerant services using the state machine approach: a tutorial , 1990, CSUR.

[48]  Thomas S. Heinze,et al.  Elastic Complex Event Processing under Varying Query Load , 2013, BD3@VLDB.

[49]  Jignesh M. Patel,et al.  Twitter Heron: Stream Processing at Scale , 2015, SIGMOD Conference.

[50]  Kurt Rothermel,et al.  Meeting predictable buffer limits in the parallel execution of event processing operators , 2014, 2014 IEEE International Conference on Big Data (Big Data).

[51]  Antonio Iera,et al.  The Internet of Things: A survey , 2010, Comput. Networks.

[52]  Jeong-Hyon Hwang,et al.  Fast and Highly-Available Stream Processing over Wide Area Networks , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[54]  M. Stephens EDF Statistics for Goodness of Fit and Some Comparisons , 1974 .

[55]  Kurt Rothermel,et al.  Access Policy Consolidation for Event Processing Systems , 2013, 2013 Conference on Networked Systems.

[56]  Sharma Chakravarthy,et al.  Seamless Event and Data Stream Processing: Reconciling Windows and Consumption Modes , 2011, DASFAA.

[57]  Jeong-Hyon Hwang,et al.  Borealis-R: a replication-transparent stream processing system for wide-area monitoring applications , 2008, SIGMOD Conference.

[58]  Pramod Bhatotia,et al.  Slider: incremental sliding window analytics , 2014, Middleware.

[59]  Jennifer Widom,et al.  The CQL continuous query language: semantic foundations and query execution , 2006, The VLDB Journal.

[60]  Kurt Rothermel,et al.  MCEP: A Mobility-Aware Complex Event Processing System , 2014, ACM Trans. Internet Techn..

[61]  Hua Chen,et al.  Pingmesh: A Large-Scale System for Data Center Network Latency Measurement and Analysis , 2015, SIGCOMM.

[62]  Andrey Brito,et al.  User-Constraint and Self-Adaptive Fault Tolerance for Event Stream Processing Systems , 2015, 2015 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks.

[63]  David Luckham,et al.  The power of events - an introduction to complex event processing in distributed enterprise systems , 2002, RuleML.

[64]  Fred B. Schneider,et al.  The primary-backup approach , 1993 .

[65]  Kostas Magoutis,et al.  CEC: Continuous eventual checkpointing for data stream processing operators , 2011, 2011 IEEE/IFIP 41st International Conference on Dependable Systems & Networks (DSN).

[66]  Massimo Franceschetti,et al.  A Leader Election Protocol for Fault Recovery in Asynchronous Fully-Connected Networks , 1998 .

[67]  Joseph M. Hellerstein,et al.  MapReduce Online , 2010, NSDI.

[68]  Guoqiang Mao,et al.  Road traffic density estimation in vehicular networks , 2013, 2013 IEEE Wireless Communications and Networking Conference (WCNC).

[69]  Andrey Brito,et al.  Scalable and Low-Latency Data Processing with Stream MapReduce , 2011, 2011 IEEE Third International Conference on Cloud Computing Technology and Science.

[70]  Kun-Lung Wu,et al.  Auto-parallelizing stateful distributed streaming applications , 2012, 2012 21st International Conference on Parallel Architectures and Compilation Techniques (PACT).

[71]  Andrey Brito,et al.  Minimizing Latency in Fault-Tolerant Distributed Stream Processing Systems , 2009, 2009 29th IEEE International Conference on Distributed Computing Systems.

[72]  Kurt Rothermel,et al.  RECEP: selection-based reuse for distributed complex event processing , 2014, DEBS '14.

[73]  Stanley B. Zdonik,et al.  Staying FIT: Efficient Load Shedding Techniques for Distributed Stream Processing , 2007, VLDB.

[74]  Tiziano De Matteis,et al.  Parallel Patterns for Window-Based Stateful Operators on Data Streams: An Algorithmic Skeleton Approach , 2017, International Journal of Parallel Programming.

[75]  Albert G. Greenberg,et al.  Fault-tolerant stream processing using a distributed, replicated file system , 2008, Proc. VLDB Endow..

[76]  Johannes Gehrke,et al.  Fast Iterative Graph Computation with Block Updates , 2013, Proc. VLDB Endow..

[77]  Andrey Brito,et al.  Speculative out-of-order event processing with software transaction memory , 2008, DEBS.

[78]  Kurt Rothermel,et al.  Efficient and Distributed Rule Placement in Heavy Constraint-Driven Event Systems , 2011, 2011 IEEE International Conference on High Performance Computing and Communications.

[79]  Srinath Perera,et al.  Siddhi: a second look at complex event processing architectures , 2011, GCE '11.

[80]  Michael Stonebraker,et al.  A Comparison of Stream-Oriented High-Availability Algorithms , 2003 .

[81]  Henk Tijms New and old results for the M/D/c queue , 2006 .

[82]  Robert Grimm,et al.  A catalog of stream processing optimizations , 2014, ACM Comput. Surv..

[83]  Samuel Kounev,et al.  Self‐adaptive workload classification and forecasting for proactive resource provisioning , 2014, Concurr. Comput. Pract. Exp..

[84]  Liang Tong,et al.  A hierarchical edge cloud architecture for mobile computing , 2016, IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications.

[85]  Christina A. Christie,et al.  The Chi-Square Test , 2012 .

[86]  Kurt Rothermel,et al.  Knowledge Is at the Edge! How to Search in Distributed Machine Learning Models , 2017, OTM Conferences.

[87]  David Maier,et al.  Frames: data-driven windows , 2016, DEBS.

[88]  Stanley B. Zdonik,et al.  Window-aware load shedding for aggregation queries over data streams , 2006, VLDB.

[89]  Kurt Rothermel,et al.  GraphCEP: real-time data analytics using parallel complex event and graph processing , 2016, DEBS.

[90]  Kun-Lung Wu,et al.  Elastic Scaling for Data Stream Processing , 2014, IEEE Transactions on Parallel and Distributed Systems.

[91]  Dror G. Feitelson,et al.  Workload Modeling for Computer Systems Performance Evaluation , 2015 .

[92]  Thomas S. Heinze,et al.  Latency-aware elastic scaling for distributed data stream processing systems , 2014, DEBS '14.

[93]  Claudio Soriente,et al.  StreamCloud: An Elastic and Scalable Data Streaming System , 2012, IEEE Transactions on Parallel and Distributed Systems.

[94]  Hitesh Ballani,et al.  Towards predictable datacenter networks , 2011, SIGCOMM 2011.

[95]  Thomas S. Heinze,et al.  Auto-scaling techniques for elastic data stream processing , 2014, 2014 IEEE 30th International Conference on Data Engineering Workshops.

[96]  Ruben Mayer,et al.  StreamLearner: Distributed Incremental Machine Learning on Event Streams: Grand Challenge , 2017, DEBS.

[97]  Alessandro Margara,et al.  TESLA: a formally defined event specification language , 2010, DEBS '10.

[98]  Bugra Gedik Partitioning functions for stateful data parallelism in stream processing , 2013, The VLDB Journal.

[99]  Tiziano De Matteis,et al.  Elastic Scaling for Distributed Latency-Sensitive Data Stream Operators , 2017, 2017 25th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP).

[100]  David Maier,et al.  No pane, no gain: efficient evaluation of sliding-window aggregates over data streams , 2005, SGMD.

[101]  Badrish Chandramouli,et al.  Accurate latency estimation in a distributed event processing system , 2011, 2011 IEEE 27th International Conference on Data Engineering.

[102]  Kun-Lung Wu,et al.  Language level checkpointing support for stream processing applications , 2009, 2009 IEEE/IFIP International Conference on Dependable Systems & Networks.

[103]  Raja Lavanya,et al.  Fog Computing and Its Role in the Internet of Things , 2019, Advances in Computer and Electrical Engineering.

[104]  Margo I. Seltzer,et al.  Network-Aware Operator Placement for Stream-Processing Systems , 2006, 22nd International Conference on Data Engineering (ICDE'06).

[105]  Kurt Rothermel,et al.  Cordies: expressive event correlation in distributed systems , 2010, DEBS '10.

[106]  Samuel Kounev,et al.  Performance Modeling and Evaluation of Distributed Component-Based Systems Using Queueing Petri Nets , 2006, IEEE Transactions on Software Engineering.

[107]  Raul Castro Fernandez,et al.  Integrating scale out and fault tolerance in stream processing using operator state management , 2013, SIGMOD '13.

[108]  Vincenzo Grassi,et al.  Optimal operator placement for distributed stream processing applications , 2016, DEBS.

[109]  Sharma Chakravarthy,et al.  Snoop: An Expressive Event Specification Language for Active Databases , 1994, Data Knowl. Eng..

[110]  Opher Etzion,et al.  Amit - the situation manager , 2003, The VLDB Journal.

[111]  Daniel Mills,et al.  MillWheel: Fault-Tolerant Stream Processing at Internet Scale , 2013, Proc. VLDB Endow..

[112]  Yanlei Diao,et al.  High-performance complex event processing over streams , 2006, SIGMOD Conference.

[113]  Ying Xing,et al.  Scalable Distributed Stream Processing , 2003, CIDR.

[114]  Themistoklis Charalambous,et al.  Overload Management in Data Stream Processing Systems with Latency Guarantees , 2012, ICAC 2012.

[115]  Leonardo Querzoni,et al.  Load-aware shedding in stream processing systems , 2016, DEBS.

[116]  Vincenzo Gulisano,et al.  The DEBS 2017 Grand Challenge , 2017, DEBS.

[117]  Michael Stonebraker,et al.  Fault-tolerance in the borealis distributed stream processing system , 2008, ACM Trans. Database Syst..

[118]  Tore Risch,et al.  Massive scale-out of expensive continuous queries , 2011, Proc. VLDB Endow..

[119]  Thomas S. Heinze,et al.  Online parameter optimization for elastic data stream processing , 2015, SoCC.

[120]  Sharma Chakravarthy,et al.  LOAD SHEDDING IN DATA STREAM MANAGEMENT SYSTEMS , 2009 .

[121]  Kurt Rothermel,et al.  MigCEP: operator migration for mobility driven distributed complex event processing , 2013, DEBS.

[122]  Ruben Mayer,et al.  FogStore: Toward a distributed data store for Fog computing , 2017, 2017 IEEE Fog World Congress (FWC).

[123]  Martin Hirzel,et al.  Low-Latency Sliding-Window Aggregation in Worst-Case Constant Time , 2017, DEBS.

[124]  Michael Stonebraker,et al.  Load Shedding in a Data Stream Manager , 2003, VLDB.

[125]  Alessandro Margara,et al.  Low latency complex event processing on parallel hardware , 2012, J. Parallel Distributed Comput..

[126]  Magdalena Balazinska,et al.  Moirae: History-Enhanced Monitoring , 2007, CIDR.

[127]  Kurt Rothermel,et al.  Rollback-recovery without checkpoints in distributed event processing systems , 2013, DEBS '13.

[128]  Yuan Yu,et al.  Dryad: distributed data-parallel programs from sequential building blocks , 2007, EuroSys '07.

[129]  Vincenzo Guerriero,et al.  Power Law Distribution: Method of Multi-scale Inferential Statistics , 2012 .

[130]  Andrey Brito,et al.  Active Replication at (Almost) No Cost , 2011, 2011 IEEE 30th International Symposium on Reliable Distributed Systems.

[131]  Nesime Tatbul,et al.  Scalable Data Partitioning Techniques for Parallel Sliding Window Processing over Data Streams , 2011 .

[132]  Rainer Unland,et al.  On the semantics of complex events in active database management systems , 1999, Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337).

[133]  Nesime Tatbul,et al.  RIP: run-based intra-query parallelism for scalable complex event processing , 2013, DEBS.

[134]  A. Taleb-Bendiab,et al.  A Comparative Study into Distributed Load Balancing Algorithms for Cloud Computing , 2010, 2010 IEEE 24th International Conference on Advanced Information Networking and Applications Workshops.

[135]  Seif Haridi,et al.  Apache Flink™: Stream and Batch Processing in a Single Engine , 2015, IEEE Data Eng. Bull..