Flaglets for studying the large-scale structure of the Universe

Pressing questions in cosmology such as the nature of dark matter and dark energy can be addressed using large galaxy surveys, which measure the positions, properties and redshifts of galaxies in order to map the large-scale structure of the Universe. We review the Fourier-Laguerre transform, a novel transform in 3D spherical coordinates which is based on spherical harmonics combined with damped Laguerre polynomials and appropriate for analysing galaxy surveys. We also recall the construction of aglets, 3D wavelets obtained through a tiling of the Fourier-Laguerre space, which can be used to extract scale-dependent, spatially localised features on the ball. We exploit a sampling theorem to obtain exact Fourier-Laguerre and aglet transforms, such that band-limited signals can analysed and reconstructed at oating point accuracy on a nite number of voxels on the ball. We present a potential application of the aglet transform for nding voids in galaxy surveys and studying the large-scale structure of the Universe.

[1]  M. Neyrinck zobov: a parameter-free void-finding algorithm , 2007, 0712.3049.

[2]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[3]  Rien van de Weygaert,et al.  A hierarchy of voids: much ado about nothing , 2003, astro-ph/0311260.

[4]  Edward J. Wollack,et al.  Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.

[5]  Jason D. McEwen,et al.  Fourier-Laguerre transform, convolution and wavelets on the ball , 2013, ArXiv.

[6]  Didier Lemoine,et al.  The discrete Bessel transform algorithm , 1994 .

[7]  J.-L. Starck,et al.  Spherical 3D isotropic wavelets , 2012 .

[8]  A. Refregier,et al.  3D spherical analysis of baryon acoustic oscillations , 2011, 1112.3100.

[9]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: Wiener reconstruction of the cosmic web , 2003, astro-ph/0312546.

[10]  B. Wandelt,et al.  Precision cosmology with voids: definition, methods, dynamics , 2009, 0906.4101.

[11]  A. S. Szalay,et al.  The Hierarchical Structure and Dynamics of Voids , 2012, 1203.0248.

[12]  Voids in a ΛCDM universe , 2004, astro-ph/0409162.

[13]  D. Weinberg,et al.  A PUBLIC VOID CATALOG FROM THE SDSS DR7 GALAXY REDSHIFT SURVEYS BASED ON THE WATERSHED TRANSFORM , 2012, 1207.2524.

[14]  Yan-Chuan Cai,et al.  Voids in modified gravity: excursion set predictions , 2012, 1212.2216.

[15]  Krzysztof M. Gorski,et al.  NeedATool: A NEEDLET ANALYSIS TOOL FOR COSMOLOGICAL DATA PROCESSING , 2010, 1010.1371.

[16]  E. Görlich,et al.  A convolution structure for Laguerre series , 1982 .

[17]  Paolo Baldi,et al.  Spherical needlets for cosmic microwave background data analysis , 2008 .

[18]  Pierre Vandergheynst,et al.  S2LET: A code to perform fast wavelet analysis on the sphere , 2012, ArXiv.

[19]  Simon Prunet,et al.  Full-sky weak-lensing simulation with 70 billion particles , 2008, 0807.3651.

[20]  Jason D. McEwen,et al.  Ieee Transactions on Signal Processing 1 Exact Wavelets on the Ball , 2022 .

[21]  Yves Wiaux,et al.  A Novel Sampling Theorem on the Sphere , 2011, IEEE Transactions on Signal Processing.

[22]  O. Blanc,et al.  Exact reconstruction with directional wavelets on the sphere , 2007, 0712.3519.

[23]  D. Healy,et al.  Computing Fourier Transforms and Convolutions on the 2-Sphere , 1994 .

[24]  Rien van de Weygaert,et al.  Cosmic Voids: structure, dynamics and galaxies , 2009, 0912.2997.

[25]  O. Lahav,et al.  Reconstructed density and velocity fields from the 2MASS redshift survey , 2006, astro-ph/0610005.

[26]  G. A. Watson A treatise on the theory of Bessel functions , 1944 .

[27]  B. Wandelt,et al.  Voids as a precision probe of dark energy , 2010, 1002.0014.

[28]  Jean-Luc Starck,et al.  Wavelets, ridgelets and curvelets on the sphere , 2006 .

[29]  D. Weinberg,et al.  A FIRST APPLICATION OF THE ALCOCK–PACZYNSKI TEST TO STACKED COSMIC VOIDS , 2012, 1208.1058.

[30]  J.-L. Starck,et al.  3DEX: a code for fast spherical Fourier-Bessel decomposition of 3D surveys , 2011, 1111.3591.

[31]  L. Raul Abramo,et al.  CMB in a box: causal structure and the Fourier-Bessel expansion , 2010, 1005.0563.