Multiobjective evolutionary algorithms for electric power dispatch problem

The potential and effectiveness of the newly developed Pareto-based multiobjective evolutionary algorithms (MOEA) for solving a real-world power system multiobjective nonlinear optimization problem are comprehensively discussed and evaluated in this paper. Specifically, nondominated sorting genetic algorithm, niched Pareto genetic algorithm, and strength Pareto evolutionary algorithm (SPEA) have been developed and successfully applied to an environmental/economic electric power dispatch problem. A new procedure for quality measure is proposed in this paper in order to evaluate different techniques. A feasibility check procedure has been developed and superimposed on MOEA to restrict the search to the feasible region of the problem space. A hierarchical clustering algorithm is also imposed to provide the power system operator with a representative and manageable Pareto-optimal set. Moreover, an approach based on fuzzy set theory is developed to extract one of the Pareto-optimal solutions as the best compromise one. These multiobjective evolutionary algorithms have been individually examined and applied to the standard IEEE 30-bus six-generator test system. Several optimization runs have been carried out on different cases of problem complexity. The results of MOEA have been compared to those reported in the literature. The results confirm the potential and effectiveness of MOEA compared to the traditional multiobjective optimization techniques. In addition, the results demonstrate the superiority of the SPEA as a promising multiobjective evolutionary algorithm to solve different power system multiobjective optimization problems.

[1]  R. Hahn,et al.  Assessing the Influence of Power Pools on Emission Constrained Economic Dispatch , 1986, IEEE Power Engineering Review.

[2]  C. S. Chang,et al.  Security-constrained multiobjective generation dispatch using bicriterion global optimisation , 1995 .

[3]  Lothar Thiele,et al.  An evolutionary algorithm for multiobjective optimization: the strength Pareto approach , 1998 .

[4]  Joong-Rin Shin,et al.  A particle swarm optimization for economic dispatch with nonsmooth cost functions , 2005, IEEE Transactions on Power Systems.

[5]  Alan D. Christiansen,et al.  MOSES: A MULTIOBJECTIVE OPTIMIZATION TOOL FOR ENGINEERING DESIGN , 1999 .

[6]  S. A. Al-Baiyat,et al.  Economic load dispatch multiobjective optimization procedures using linear programming techniques , 1995 .

[7]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[8]  G. P. Granelli,et al.  Emission constrained dynamic dispatch , 1992 .

[9]  Thomas Bäck,et al.  Parallel Problem Solving from Nature — PPSN V , 1998, Lecture Notes in Computer Science.

[10]  Jian-Xin Xu,et al.  Constrained multiobjective global optimisation of longitudinal interconnected power system by genetic algorithm , 1996 .

[11]  Gary B. Lamont,et al.  Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art , 2000, Evolutionary Computation.

[12]  D. B. Das,et al.  New multi-objective stochastic search technique for economic load dispatch , 1998 .

[13]  A. C. Liew,et al.  Multiobjective generation scheduling using fuzzy optimal search technique , 1994 .

[14]  Marco Farina,et al.  A fuzzy definition of "optimality" for many-criteria optimization problems , 2004, IEEE Trans. Syst. Man Cybern. Part A.

[15]  Mikkel T. Jensen,et al.  Reducing the run-time complexity of multiobjective EAs: The NSGA-II and other algorithms , 2003, IEEE Trans. Evol. Comput..

[16]  Ferial El-Hawary,et al.  A summary of environmental/economic dispatch algorithms , 1994 .

[17]  H. Sasaki,et al.  Multiobjective optimal generation dispatch based on probability security criteria , 1988 .

[18]  A. A. Abido,et al.  A new multiobjective evolutionary algorithm for environmental/economic power dispatch , 2001, 2001 Power Engineering Society Summer Meeting. Conference Proceedings (Cat. No.01CH37262).

[19]  Masatoshi Sakawa,et al.  An Interactive Fuzzy Satisficing Method for Multiobjective Linear-Programming Problems and Its Application , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[20]  Saudi Arabia,et al.  A NOVEL MULTIOBJECTIVE EVOLUTIONARY ALGORITHM FOR SOLVING ENVIRONMENTAL/ECONOMIC DISPATCH PROBLEM , 2002 .

[21]  Mohammad Ali Abido,et al.  A novel multiobjective evolutionary algorithm for optimal reactive power dispatch problem , 2003, 10th IEEE International Conference on Electronics, Circuits and Systems, 2003. ICECS 2003. Proceedings of the 2003.

[22]  A. Selvakumar,et al.  A New Particle Swarm Optimization Solution to Nonconvex Economic Dispatch Problems , 2007, IEEE Transactions on Power Systems.

[23]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[24]  A. Eiben,et al.  A multi-sexual genetic algorithm for multiobjective optimization , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[25]  Zwe-Lee Gaing,et al.  Particle swarm optimization to solving the economic dispatch considering the generator constraints , 2003 .

[26]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[27]  Dipti Srinivasan,et al.  An evolutionary algorithm for evaluation of emission compliance options in view of the Clean Air Act Amendments , 1997 .

[28]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[29]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[30]  Christer Carlsson,et al.  Fuzzy multiple criteria decision making: Recent developments , 1996, Fuzzy Sets Syst..

[31]  Byoung-Tak Zhang,et al.  Multiobjective evolutionary optimization of DNA sequences for reliable DNA computing , 2005, IEEE Transactions on Evolutionary Computation.

[32]  M. A. Abido Environmental/economic power dispatch using multiobjective evolutionary algorithms , 2003 .

[33]  D. P. Kothari,et al.  Stochastic economic emission load dispatch , 1993 .

[34]  M. Abido Environmental/economic power dispatch using multiobjective evolutionary algorithms , 2003, 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491).

[35]  Samir W. Mahfoud Niching methods for genetic algorithms , 1996 .

[36]  Kalyanmoy Deb,et al.  MULTI-OBJECTIVE FUNCTION OPTIMIZATION USING NON-DOMINATED SORTING GENETIC ALGORITHMS , 1994 .

[37]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[38]  Carlos A. Coello Coello,et al.  Optimal design of reinforced concrete beams using genetic algorithms , 1997 .

[39]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[40]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[41]  Lingfeng Wang,et al.  Stochastic combined heat and power dispatch based on multi-objective particle swarm optimization , 2006 .

[42]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[43]  Joel N. Morse,et al.  Reducing the size of the nondominated set: Pruning by clustering , 1980, Comput. Oper. Res..

[44]  Hong-Tzer Yang,et al.  Bi-objective power dispatch using fuzzy satisfaction-maximizing decision approach , 1997 .

[45]  M. A. Abido,et al.  A niched Pareto genetic algorithm for multiobjective environmental/economic dispatch , 2003 .

[46]  Kalyanmoy Deb,et al.  Dynamic multiobjective optimization problems: test cases, approximations, and applications , 2004, IEEE Transactions on Evolutionary Computation.

[47]  A. A. El-Keib,et al.  Economic dispatch in view of the Clean Air Act of 1990 , 1994 .

[48]  John J. Grefenstette Proceedings of the First International Conference on Genetic Algorithms and their Applications, July 24-26, 1985, at the Carnegie-Mellon University, Pittsburgh, PA , 1988 .

[49]  Robert W. Hahn,et al.  Assessing the Influence of Power Pools on Emission Constrained Economic Dispatch , 1986, IEEE Transactions on Power Systems.

[50]  Marco Laumanns,et al.  Running time analysis of multiobjective evolutionary algorithms on pseudo-Boolean functions , 2004, IEEE Transactions on Evolutionary Computation.

[51]  Arturo Roman Messina,et al.  Normal form analysis of stressed power systems: incorporation of SVC models , 2003 .

[52]  Francisco Herrera,et al.  Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis , 1998, Artificial Intelligence Review.

[53]  J. S. Heslin,et al.  A multiobjective production costing model for analyzing emissions dispatching and fuel switching (of power stations) , 1989 .