A fully feathered enantiornithine foot and wing fragment preserved in mid-Cretaceous Burmese amber

[1]  D. Dhouailly,et al.  Getting to the root of scales, feather and hair: As deep as odontodes? , 2019, Experimental dermatology.

[2]  Michael S. Y. Lee,et al.  A mid-Cretaceous embryonic-to-neonate snake in amber from Myanmar , 2018, Science Advances.

[3]  W. Sellers,et al.  A diminutive perinate European Enantiornithes reveals an asynchronous ossification pattern in early birds , 2018, Nature Communications.

[4]  C. Chuong,et al.  Multiple Regulatory Modules Are Required for Scale‐to‐Feather Conversion , 2018, Molecular biology and evolution.

[5]  L. Xing,et al.  A flattened enantiornithine in mid-Cretaceous Burmese amber: morphology and preservation. , 2018, Science bulletin.

[6]  L. Xing,et al.  A mid-Cretaceous enantiornithine (Aves) hatchling preserved in Burmese amber with unusual plumage , 2017 .

[7]  Zhonghe Zhou,et al.  A bizarre Early Cretaceous enantiornithine bird with unique crural feathers and an ornithuromorph plough-shaped pygostyle , 2017, Nature Communications.

[8]  A. P. Wolfe,et al.  A Feathered Dinosaur Tail with Primitive Plumage Trapped in Mid-Cretaceous Amber , 2016, Current Biology.

[9]  L. Chiappe,et al.  Birds of Stone: Chinese Avian Fossils from the Age of Dinosaurs , 2016 .

[10]  Gang Li,et al.  Mummified precocial bird wings in mid-Cretaceous Burmese amber , 2016, Nature Communications.

[11]  Soki Hattori Evolution of The Hallux in Non-Avian Theropod Dinosaurs , 2016, Journal of Vertebrate Paleontology.

[12]  D. Grimaldi,et al.  Mid-Cretaceous amber fossils illuminate the past diversity of tropical lizards , 2016, Science Advances.

[13]  A. Walsh,et al.  Corrigendum: The dynamics of methylammonium ions in hybrid organic–inorganic perovskite solar cells , 2015, Nature Communications.

[14]  F. Novas,et al.  A Mesozoic bird from Gondwana preserving feathers , 2015, Nature Communications.

[15]  P. Currie,et al.  Bristles before down: A new perspective on the functional origin of feathers , 2015, Evolution; international journal of organic evolution.

[16]  Teresa J. Feo,et al.  Barb geometry of asymmetrical feathers reveals a transitional morphology in the evolution of avian flight , 2015, Proceedings of the Royal Society B: Biological Sciences.

[17]  O. Rauhut,et al.  New specimen of Archaeopteryx provides insights into the evolution of pennaceous feathers , 2014, Nature.

[18]  Xiaoting Zheng,et al.  Hind Wings in Basal Birds and the Evolution of Leg Feathers , 2013, Science.

[19]  D. Grimaldi,et al.  Age constraint on Burmese amber based on U–Pb dating of zircons , 2012 .

[20]  C. Chuong,et al.  Homology and Potential Cellular and Molecular Mechanisms for the Development of Unique Feather Morphologies in Early Birds. , 2012, Geosciences.

[21]  Xiaoting Zheng,et al.  Exceptional dinosaur fossils show ontogenetic development of early feathers , 2010, Nature.

[22]  M. Benton,et al.  Fossilized melanosomes and the colour of Cretaceous dinosaurs and birds , 2010, Nature.

[23]  Xing Xu,et al.  A pre-Archaeopteryx troodontid theropod from China with long feathers on the metatarsus , 2009, Nature.

[24]  D. Dhouailly Author manuscript, published in "Journal of Anatomy 2009;214(4):587-606" DOI: 10.1111/j.1469-7580.2008.01041.x A new scenario for the evolutionary origin of hair, feather, and avian scales , 2022 .

[25]  J. Vinther,et al.  The colour of fossil feathers , 2008, Biology Letters.

[26]  Ji Qiang,et al.  Juvenile Birds from the Early Cretaceous of China: Implications for Enantiornithine Ontogeny , 2007 .

[27]  Zhonghe Zhou,et al.  A Precocial Avian Embryo from the Lower Cretaceous of China , 2004, Science.

[28]  V. Perrichot Early Cretaceous amber from south-western France: insight into the Mesozoic litter fauna , 2004 .

[29]  W. Weitschat,et al.  Atlas of Plants and Animals in Baltic Amber , 2003 .

[30]  R. Cruickshank,et al.  Geology of an amber locality in the Hukawng Valley, Northern Myanmar , 2003 .

[31]  Zhonghe Zhou,et al.  Four-winged dinosaurs from China , 2003, Nature.

[32]  Frankie D. Jackson,et al.  LATE CRETACEOUS AVIAN EGGS WITH EMBRYOS FROM ARGENTINA , 2002 .

[33]  D. Grimaldi,et al.  Fossiliferous Cretaceous Amber from Myanmar (Burma): Its Rediscovery, Biotic Diversity, and Paleontological Significance , 2002 .

[34]  Zhonghe Zhou,et al.  Early diversification of birds: Evidence from a new opposite bird , 2001 .

[35]  C. Dove A Descriptive and Phylogenetic Analysis of Plumulaceous Feather Characters in Charadriiformes , 2000 .

[36]  A. Brush Evolving a Protofeather and Feather Diversity1 , 2000 .

[37]  C. Chuong,et al.  β-catenin in Epithelial Morphogenesis: Conversion of Part of Avian Foot Scales into Feather Buds with a Mutated β-Catenin , 2000 .

[38]  R. Prum Development and evolutionary origin of feathers. , 1999, The Journal of experimental zoology.

[39]  D. Briggs Molecular taphonomy of animal and plant cuticles: selective preservation and diagenesis , 1999 .

[40]  D. Rasskin-Gutman,et al.  A Nestling Bird from the Lower Cretaceous of Spain: Implications for Avian Skull and Neck Evolution , 1997 .

[41]  Y. Kato,et al.  Epigenesis in developing avian scales. III. Stage-specific alterations of the developmental program caused by 5-bromodeoxyuridine. , 1987, Developmental biology.

[42]  M. H. Hardy,et al.  Formation of feathers on chick foot scales: a stage-dependent morphogenetic response to retinoic acid. , 1980, Journal of embryology and experimental morphology.

[43]  C. Chuong,et al.  beta-catenin in epithelial morphogenesis: conversion of part of avian foot scales into feather buds with a mutated beta-catenin. , 2000, Developmental biology.

[44]  Sharon Wong Development and behaviour of hatchlings of the Australian Brush-turkey Alectura lathami , 1999 .

[45]  L. Chiappe Enantiornithine (Aves) tarsometatarsi from the Cretaceous Lecho Formation of northwestern Argentina. American Museum novitates ; no. 3083 , 1993 .

[46]  A. M. Lucas,et al.  Avian anatomy : integument , 1974 .