Combinatorics of faithfully balanced modules

We study and classify faithfully balanced modules for the algebra of lower triangular $n$ by $n$ matrices. The theory extends known results about tilting modules, which are classified by binary trees, and counted with the Catalan numbers. The number of faithfully balanced modules is a $2$-factorial number. Among them are $n!$ modules with $n$ indecomposable summands, which can be classified by interleaved binary trees or by increasing binary trees.

[1]  H. Thomas The Tamari Lattice as it Arises in Quiver Representations , 2011, 1110.3040.

[2]  Kiiti Morita On algebras for which every faithful representation is its own second commutator , 1958 .

[3]  Auslander Maurice,et al.  Representation Theory of Artin Algebras I , 1974 .

[4]  Matthew Pressland,et al.  On Quiver Grassmannians and Orbit Closures for Gen-Finite Modules , 2018, Algebras and Representation Theory.

[5]  C. Ringel The Catalan combinatorics of the hereditary artin algebras , 2015, 1502.06553.

[6]  Philippe Nadeau The structure of alternative tableaux , 2011, J. Comb. Theory, Ser. A.

[7]  R. Thrall Some generalization of quasi-Frobenius algebras , 1948 .

[8]  J. Sauter,et al.  On faithfully balanced modules, F-cotilting and F-Auslander algebras , 2019, Journal of Algebra.

[9]  Changchang Xi,et al.  Double Centralizer Properties, Dominant Dimension, and Tilting Modules☆ , 2001 .

[10]  Takayoshi Wakamatsu On modules with trivial self-extensions , 1988 .

[11]  Frank W. Anderson,et al.  Rings and Categories of Modules , 1974 .

[12]  D. Foata,et al.  Distributions Euleriennes et Mahoniennes sur le Groupe des Permutations , 1977 .

[13]  L. Hille On the volume of a tilting module , 2006 .

[14]  D. Happel,et al.  On a Partial Order of Tilting Modules , 2005 .

[15]  Jean Françon Arbres Binaires de Recherche: Propriétés Combinatioires et Applications , 1976, RAIRO Theor. Informatics Appl..

[16]  I. Reiten,et al.  $\tau $-tilting theory , 2012, Compositio Mathematica.

[17]  Takayoshi Wakamatsu Stable equivalence for self-injective algebras and a generalization of tilting modules , 1990 .

[18]  D. Simson,et al.  Elements of the Representation Theory of Associative Algebras , 2007 .

[19]  Jean-Christophe Aval,et al.  Tree-like Tableaux , 2013, Electron. J. Comb..

[20]  G. Fitzgerald,et al.  'I. , 2019, Australian journal of primary health.

[21]  Lauren K. Williams,et al.  Permutation tableaux and permutation patterns , 2007, J. Comb. Theory, Ser. A.

[22]  K. Yamagata,et al.  Frobenius Algebras II , 2011 .

[23]  M. Auslander,et al.  Preprojective modules over artin algebras , 1980 .

[24]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[25]  Takayoshi Wakamatsu On Frobenius algebras , 2003 .

[26]  Martin Rubey,et al.  A combinatorial classification of 2-regular simple modules for Nakayama algebras , 2018, 1811.05846.