GCDHEU: Heuristic Polynomial GCD Algorithm Based On Integer GCD Computation
暂无分享,去创建一个
[1] Alfred V. Aho,et al. The Design and Analysis of Computer Algorithms , 1974 .
[2] George E. Collins,et al. Subresultants and Reduced Polynomial Remainder Sequences , 1967, JACM.
[3] Anthony C. Hearn. Non-modular computation of polynomial GCD's using trial division , 1979, EUROSAM.
[4] Richard Zippel,et al. Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.
[5] Joachim von zur Gathen,et al. Factoring Sparse Multivariate Polynomials , 1983, J. Comput. Syst. Sci..
[6] Bruno Buchberger,et al. Computer algebra symbolic and algebraic computation , 1982, SIGS.
[7] David Y. Y. Yun,et al. The EZ GCD algorithm , 1973, ACM Annual Conference.
[8] W. S. Brown. On the subresultant PRS algorithm , 1976, SYMSAC '76.
[9] James H. Davenport,et al. HEUGCD: How Elementary Upperbounds Generated Cheaper Data , 1985, European Conference on Computer Algebra.
[10] M. Mignotte. Some Useful Bounds , 1983 .
[11] W. S. Brown. On Euclid's algorithm and the computation of polynomial greatest common divisors , 1971, SYMSAC '71.
[12] Bruce W. Char,et al. GCDHEU: Heuristic Polynomial GCD Algorithm Based on Integer GCD Computation , 1984, EUROSAM.
[13] Paul S. Wang,et al. The EEZ-GCD algorithm , 1980, SIGS.