CAFE-R: A Code That Solves the Special Relativistic Radiation Hydrodynamics Equations

We present a 3D special-relativistic radiation hydrodynamics code. It uses the radiative inversion scheme with the M1-closure relation for the radiation equations, which allows the treatment of a wide range of optical depth, temperature and opacity. The radiation field is treated in the grey-body approximation. We present the standard 1D and 2D tests that include both optically thin and thick scenarios, as well as hydrodynamical and radiation pressure dominated configurations. As an application in 3D, we show the evolution of a jet driven by radiation-hydrodynamics with a helical perturbation. The code is expected to allow the exploration of scenarios in high-energy astrophysics where the radiation is important, like sources of GRBs.

[1]  F. D. Lora-Clavijo,et al.  CAFE: A NEW RELATIVISTIC MHD CODE , 2014, 1408.5846.

[2]  A. Tchekhovskoy,et al.  Semi-implicit scheme for treating radiation under M1 closure in general relativistic conservative fluid dynamics codes , 2012, 1212.5050.

[3]  Modelling long GRBs using a single shock with relativistic radiation hydrodynamics , 2016, 1604.03457.

[4]  B. Paczyński,et al.  The appearance of highly relativistic, spherically symmetric stellar winds , 1991 .

[5]  Enrique Moreno Méndez,et al.  Dynamics of jets during the Common Envelope phase , 2017, 1702.03293.

[6]  Youhei Masada,et al.  TWO-DIMENSIONAL NUMERICAL STUDY FOR RAYLEIGH–TAYLOR AND RICHTMYER–MESHKOV INSTABILITIES IN RELATIVISTIC JETS , 2013, 1306.1046.

[7]  P. Huynh,et al.  HERACLES: a three-dimensional radiation hydrodynamics code , 2007 .

[8]  F. Guzm'an,et al.  Evolution of jets driven by relativistic radiation hydrodynamics as long and low-luminosity GRBs , 2017, Monthly Notices of the Royal Astronomical Society.

[9]  D. Harris,et al.  Relativistic Jets from Active Galactic Nuclei: KRAWCZYNSKI:ASTRO JETS O-BK , 2012 .

[10]  E. Audit,et al.  A numerical model for multigroup radiation hydrodynamics , 2011, 1101.4955.

[11]  Martí,et al.  Relativistic Jets from Collapsars , 1999, The Astrophysical journal.

[12]  Petar Mimica,et al.  Numerical models of blackbody-dominated gamma-ray bursts – II. Emission properties , 2014, 1408.1814.

[13]  T. Shigeyama,et al.  2D RADIATION-HYDRODYNAMIC SIMULATIONS OF SUPERNOVA SHOCK BREAKOUT IN BIPOLAR EXPLOSIONS OF A BLUE SUPERGIANT PROGENITOR , 2016, 1605.08250.

[14]  M. Obergaulinger,et al.  Core collapse with magnetic fields and rotation , 2018, Journal of Physics G: Nuclear and Particle Physics.

[15]  3D simulations of the early stages of AGN jets: Geometry, thermodynamics and backflow , 2013, 1311.5562.

[16]  K. Ohsuga,et al.  A NUMERICAL SCHEME FOR SPECIAL RELATIVISTIC RADIATION MAGNETOHYDRODYNAMICS BASED ON SOLVING THE TIME-DEPENDENT RADIATIVE TRANSFER EQUATION , 2016 .

[17]  C. Ott,et al.  GENERAL-RELATIVISTIC THREE-DIMENSIONAL MULTI-GROUP NEUTRINO RADIATION-HYDRODYNAMICS SIMULATIONS OF CORE-COLLAPSE SUPERNOVAE , 2016, 1604.07848.

[18]  Petar Mimica,et al.  Numerical models of blackbody-dominated gamma-ray bursts – I. Hydrodynamics and the origin of the thermal emission , 2014, 1408.1305.

[19]  D. López-Cámara,et al.  Self-regulating jets during the common-envelope phase , 2018, Monthly Notices of the Royal Astronomical Society.

[20]  D. Lazzati,et al.  THREE-DIMENSIONAL SIMULATIONS OF LONG DURATION GAMMA-RAY BURST JETS: TIMESCALES FROM VARIABLE ENGINES , 2016, 1603.02350.

[21]  K. Nomoto,et al.  Shock wave structure in astrophysical flows with an account of photon transfer , 2014, 1412.1434.

[22]  P. Anninos,et al.  NUMERICAL SIMULATIONS OF OPTICALLY THICK ACCRETION ONTO A BLACK HOLE. I. SPHERICAL CASE , 2012, 1204.5538.

[23]  B. Dubroca,et al.  Etude théorique et numérique d'une hiérarchie de modèles aux moments pour le transfert radiatif , 1999 .

[24]  M. Shibata,et al.  Properties of Neutrino-driven Ejecta from the Remnant of a Binary Neutron Star Merger: Pure Radiation Hydrodynamics Case , 2017, 1703.10191.

[25]  S. Mineshige,et al.  GLOBAL STRUCTURE OF THREE DISTINCT ACCRETION FLOWS AND OUTFLOWS AROUND BLACK HOLES FROM TWO-DIMENSIONAL RADIATION-MAGNETOHYDRODYNAMIC SIMULATIONS , 2011, 1105.5474.

[26]  R. Fern'andez,et al.  Long-term GRMHD simulations of neutron star merger accretion discs: implications for electromagnetic counterparts , 2018, Monthly Notices of the Royal Astronomical Society.

[27]  M. Shibata,et al.  Neutrino transport in black hole-neutron star binaries: Neutrino emission and dynamical mass ejection , 2017, 1710.00827.

[28]  Olindo Zanotti,et al.  General relativistic radiation hydrodynamics of accretion flows – II. Treating stiff source terms and exploring physical limitations , 2012, 1206.6662.

[29]  Harvard,et al.  Three-dimensional general relativistic radiation magnetohydrodynamical simulation of super-Eddington accretion, using a new code HARMRAD with M1 closure , 2013, 1312.6127.

[30]  P. Chris Fragile,et al.  NUMERICAL SIMULATIONS OF OPTICALLY THICK ACCRETION ONTO A BLACK HOLE. II. ROTATING FLOW , 2014, 1408.4460.

[31]  Hiroyuki R. Takahashi,et al.  A Numerical Treatment of Anisotropic Radiation Fields Coupled with Relativistic Resistive Magnetofluids , 2013 .

[32]  D. Harris,et al.  Relativistic Jets from Active Galactic Nuclei , 2012 .

[33]  M. Norman,et al.  ZEUS-2D : a radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. II : The magnetohydrodynamic algorithms and tests , 1992 .

[34]  K. Kotake,et al.  FULLY GENERAL RELATIVISTIC SIMULATIONS OF CORE-COLLAPSE SUPERNOVAE WITH AN APPROXIMATE NEUTRINO TRANSPORT , 2012, 1202.2487.

[35]  Michael L. Norman,et al.  Beyond Flux-Limited Diffusion: Parallel Algorithms for Multidimensional Radiation Hydrodynamics , 2003 .

[36]  F. Douglas Swesty,et al.  The Accuracy, Consistency, and Speed of an Electron-Positron Equation of State Based on Table Interpolation of the Helmholtz Free Energy , 2000 .

[37]  M. Aloy,et al.  High-Resolution Three-dimensional Simulations of Relativistic Jets , 1999, astro-ph/9906428.

[38]  A. Tchekhovskoy,et al.  Numerical simulations of super-critical black hole accretion flows in general relativity , 2013, 1311.5900.

[39]  E. Ostriker,et al.  A TWO-MOMENT RADIATION HYDRODYNAMICS MODULE IN ATHENA USING A TIME-EXPLICIT GODUNOV METHOD , 2013, 1306.0010.

[40]  Inmaculada Higueras,et al.  Strong Stability for Additive Runge-Kutta Methods , 2006, SIAM J. Numer. Anal..

[41]  A powerful hydrodynamic booster for relativistic jets , 2006, astro-ph/0602437.

[42]  M. Aloy,et al.  Simulations of Jets from Active Galactic Nuclei and Gamma-Ray Bursts , 2012 .

[43]  M. Shibata,et al.  Truncated Moment Formalism for Radiation Hydrodynamics in Numerical Relativity , 2011, 1104.3937.

[44]  K. Kotake,et al.  A NEW MULTI-ENERGY NEUTRINO RADIATION-HYDRODYNAMICS CODE IN FULL GENERAL RELATIVITY AND ITS APPLICATION TO THE GRAVITATIONAL COLLAPSE OF MASSIVE STARS , 2015, 1501.06330.

[45]  C. Reynolds,et al.  HOW AGN JETS HEAT THE INTRACLUSTER MEDIUM—INSIGHTS FROM HYDRODYNAMIC SIMULATIONS , 2016, 1605.01725.

[46]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[47]  G. Smoot,et al.  Thermal and non-thermal emission from the cocoon of a gamma-ray burst jet , 2017, 1701.05198.

[48]  L. Rezzolla,et al.  General relativistic radiation hydrodynamics of accretion flows - I. Bondi-Hoyle accretion , 2011, 1105.5615.

[49]  Lawrence E. Kidder,et al.  Post-merger evolution of a neutron star-black hole binary with neutrino transport , 2015, 1502.04146.

[50]  E. Ros,et al.  Spectral evolution of flaring blazars from numerical simulations , 2016, 1601.03181.

[51]  Shoichi Yamada,et al.  JET PROPAGATIONS, BREAKOUTS, AND PHOTOSPHERIC EMISSIONS IN COLLAPSING MASSIVE PROGENITORS OF LONG-DURATION GAMMA-RAY BURSTS , 2010, 1009.2326.

[52]  C. D. Levermore,et al.  Relating Eddington factors to flux limiters , 1984 .

[53]  James M. Stone,et al.  A GODUNOV METHOD FOR MULTIDIMENSIONAL RADIATION MAGNETOHYDRODYNAMICS BASED ON A VARIABLE EDDINGTON TENSOR , 2012, 1201.2223.

[54]  S. Shapiro,et al.  Relativistic Radiation Magnetohydrodynamics in Dynamical Spacetimes , 2008, 0802.3210.

[55]  S. Mineshige,et al.  A Novel Jet Model: Magnetically Collimated, Radiation-Pressure Driven Jet , 2010, 1009.0161.

[56]  M. Aloy,et al.  On the influence of a hybrid thermal-non-thermal distribution in the internal shocks model for blazars , 2016, 1612.06383.

[57]  Joshua C. Dolence,et al.  Fornax: A Flexible Code for Multiphysics Astrophysical Simulations , 2018, The Astrophysical Journal Supplement Series.

[58]  J. M. Stone,et al.  A Module for Radiation Hydrodynamic Calculations with ZEUS-2D Using Flux-limited Diffusion , 2001, astro-ph/0102145.

[59]  Adam D. Myers,et al.  The Clustering of High-redshift (2.9 ≤ z ≤ 5.1) Quasars in SDSS Stripe 82 , 2017, 1712.03128.

[60]  Hiroyuki R. Takahashi,et al.  EXPLICIT–IMPLICIT SCHEME FOR RELATIVISTIC RADIATION HYDRODYNAMICS , 2012, 1212.4910.

[61]  S. Komissarov,et al.  Relativistic centrifugal instability , 2017, 1710.01345.

[62]  E. Ramirez-Ruiz,et al.  A Unified Model for Tidal Disruption Events , 2018, The Astrophysical Journal.

[63]  M. Aloy,et al.  Erratum: On the existence of a luminosity threshold of GRB jets in massive stars , 2018, Monthly Notices of the Royal Astronomical Society.

[64]  Equations of general relativistic radiation hydrodynamics from a tensor formalism , 2006, astro-ph/0601635.

[65]  A. Tchekhovskoy,et al.  General-relativistic Simulations of Four States of Accretion onto Millisecond Pulsars , 2017, 1708.06362.

[66]  M. Shibata,et al.  Dynamical mass ejection from the merger of asymmetric binary neutron stars: Radiation-hydrodynamics study in general relativity , 2016, 1603.01918.