Traditional numerical models usually use extensive observed hydraulic-head data as calibration targets. However, this calibration process is not applicable in remote areas with limited or no monitoring data. This study presents an approach to calibrate a large-scale groundwater flow model using the monthly Gravity Recovery and Climate Experiment (GRACE) satellite data, which have been available globally on a spatial grid of 1° in the geographic coordinate system since 2002. A groundwater storage anomaly isolated from the terrestrial water storage (TWS) anomaly is converted into hydraulic head at the center of the grid, which is then used as observed data to calibrate a numerical model to estimate aquifer hydraulic conductivity. The aquifer system in the remote and hyperarid Qaidam Basin, China, is used as a case study to demonstrate the applicability of this approach. A groundwater model using FEFLOW is constructed for the Qaidam Basin and the GRACE-derived groundwater storage anomaly over the period 2003–2012 is included to calibrate the model, which is done using an automatic estimation method (PEST). The calibrated model is then run to output hydraulic heads at three sites where long-term hydraulic head data are available. The reasonably good fit between the calculated and observed hydraulic heads, together with the very similar groundwater storage anomalies from the numerical model and GRACE data, demonstrate that this approach is generally applicable in regions of groundwater data scarcity.Résumé Les modèles numériques traditionnels utilisent de nombreuses données piézométriques observées pour leur calage. Toutefois, cette procédure de calage n’est pas applicable pour les régions éloignées où les mesures sont rares ou inexistantes. Cette étude présente une approche pour caler un modèle d’écoulement souterrain à grande échelle en utilisant les données mensuelles du satellite d’enregistrement gravimétrique et d’étude de climat (GRACE), disponibles sur une grille spatiale de 1° dans le système de coordonnées géographiques depuis 2002. Une anomalie de stockage d’eau souterraine isolée de l’anomalie terrestre de stockage d’eau (TWS) est convertie en cote piézométrique au centre de la maille de la grille, et est utilisée comme donnée d’observation pour caler un modèle numérique afin d’estimer la conductivité hydraulique de l’aquifère. Le système aquifère du bassin éloigné et hyperaride de Qaidam, Chine, est utilisé comme cas d’étude pour démontrer la faisabilité de cette approche. FEFLOW est utilisé pour modéliser les écoulements souterrains du bassin de Qaidam. L’anomalie de stockage d’eau souterraine déduite des données de GRACE sur la période 2003–2012 est utilisée pour caler le modèle, à partir d’une méthode d’estimation automatique des paramètres (PEST). Le modèle calé simule ensuite les niveaux piézométriques de trois sites pour lesquels de longues séries chronologiques piézométriques observées sont disponibles. La relativement bonne correspondance entre les niveaux piézométriques calculés et observés, ainsi que la similitude entre les anomalies de stockage d’eau souterraine du modèle numérique et de celles de GRACE, démontrent que cette approche est généralement applicable pour les régions pauvres en données sur les eaux souterraines.ResumenLos modelos numéricos tradicionales habitualmente utilizan una gran cantidad de datos observados de la carga hidráulica como patrones de calibración. Sin embargo, este proceso de calibración no es aplicable en áreas remotas con datos de monitoreo limitados o no existentes. Este estudio presenta un enfoque para calibrar un modelo de flujo de agua subterránea a gran escala usando los datos satelitales mensuales de Gravity Recovery and Climate Experiment (GRACE), que han estado disponibles globalmente a nivel mundial con una malla espacial de 1° en el sistema de coordenadas geográficas desde 2002. Una anomalía aislado del almacenamiento de agua subterránea a partir de la anomalía del almacenamiento de agua terrestre (TWS) fue convertida en una carga hidráulica en el centro de la malla, la cual es luego usada como un dato observado para calibrar un modelo numérico para estimar la conductividad hidráulica del acuífero. Se usó un sistema acuífero en la remota e hiperárida cuenca de Qaidam, China, como un caso de estudio para demostrar la aplicabilidad de este enfoque. Se construyó un modelo de agua subterránea usando FEFLOW para la cuenca de Qaidam y la anomalía del almacenamiento de agua subterránea proveniente del GRACE durante el período 2003–2012 se incluyó para calibrar el modelo, el cual es usado como un método de estimación automático (PEST). El modelo calibrado es luego corrido para obtener las cargas hidráulicas de salida en tres sitios donde los datos a largo plazo de las cargas hidráulicas están disponibles. El razonable buen ajuste entre las cargas hidráulicas calculadas y observadas, conjuntamente con anomalías muy similares del almacenamiento del agua subterránea a partir del modelo numérico y de los datos GRACE, demostraron que esta aproximación es generalmente aplicable en regiones que presentan escasez de datos de agua subterránea.摘要传统的地下水数值模型采用大量的地下水监测数据作为拟合目标。然而,这种方法在有很少甚至没有地下水观测数据的偏远地区难以应用。本研究提出了一种利用重力恢复和气候实验卫星数据 (GRACE)校准大尺度地下水流数值模型的方法。该数据是自2002年以来发布,其时间尺度为1个月,空间尺度为1度,可免费下载的。提出的方法中,先将陆地水储量(TWS) 推算的地下水储量变异数据转化为相应网格中心位置的水头值,然后将这些值作为数值模型参数率定时的拟合目标。本研究以偏远的极端干旱的中国柴达木盆地为例来展示该方法的可行性。本研究利用FEFLOW软件在柴达木盆地建立了地下水流数值模型,并用2003–2012年反演的地下水储量变异数据用于模型校准,其中采用了自动参数估计方法 (PEST)。经过校准的模型模拟的与GRACE反演的地下水储量变异数据具有较好的相似性,而且在三个具有长期地下水位观测位置的模拟和监测值具有吻合较好。这些结果展示了本研究提出的方法可以用于地下水数据缺乏地区的地下水模型校准。ResumoOs modelos numéricos tradicionais normalmente usam longas séries de dados de carga hidráulica como alvos de calibração. No entanto, esse processo de calibração não é aplicável em áreas remotas com dados de monitoramento limitados ou ausentes. Este trabalho apresenta uma abordagem para calibrar um modelo de fluxo subterrâneo de larga escala usando os dados do satélite GRACE, os quais são disponibilizados globalmente numa grade espacial de 1° no sistema de coordenadas geográficas desde 2002. Uma anomalia no armazenamento de água subterrânea isolada da anomalia de armazenamento terrestre (AAT, Armazenamento de Água Terrestre) é convertida em carga hidráulica no centro da grade, que é então usada como dado observado para calibrar um modelo numérico para estimar a condutividade hidráulica do aquífero. O sistema aquífero na remota e hiperárida bacia do Qaidam, China, é usado como estudo de caso para demonstrar a aplicabilidade dessa abordagem. O FEFLOW foi usado para construir um modelo de água subterrânea para a bacia do Qaidam e a anomalia de armazenamento subterrâneo derivada do GRACE referente ao período 2003–2012 é incluída para calibrar o modelo por meio de um método automático de estimativa (PEST). O modelo calibrado é então executado para fornecer cargas hidráulicas em três áreas onde dados de carga hidráulica de longo prazo estão disponíveis. Um ajuste razoavelmente bom entre as cargas observadas e calculadas, juntamente com as anomalias do modelo numérico e dos dados do GRACE bastante similares, demonstram que essa abordagem é, em geral, aplicável em regiões com escassez de dados.
[1]
Shin‐Chan Han,et al.
The role of groundwater in the Amazon water cycle: 3. Influence on terrestrial water storage computations and comparison with GRACE
,
2013
.
[2]
J. Fisher,et al.
Challenges and Opportunities in GRACE-Based Groundwater Storage Assessment and Management: An Example from Yemen
,
2012,
Water Resources Management.
[3]
Wenpeng Li,et al.
A review of regional groundwater flow modeling
,
2011
.
[4]
S. Swenson,et al.
A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois
,
2006
.
[5]
V. M. Tiwari,et al.
Dwindling groundwater resources in northern India, from satellite gravity observations
,
2009
.
[6]
J. Famiglietti,et al.
Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE
,
2007
.
[7]
S. Swenson,et al.
Remote sensing of groundwater storage changes in Illinois using the Gravity Recovery and Climate Experiment (GRACE)
,
2006
.
[8]
E. Sudicky,et al.
Dynamics of groundwater recharge and seepage over the Canadian landscape during the Wisconsinian glaciation
,
2008
.
[9]
Yingying Yao,et al.
Conceptual and numerical models for groundwater flow in an arid inland river basin
,
2015
.
[10]
S. Swenson,et al.
Methods for inferring regional surface‐mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time‐variable gravity
,
2002
.
[11]
J. Famiglietti,et al.
Satellite-based estimates of groundwater depletion in India
,
2009,
Nature.
[12]
Xu-sheng Wang,et al.
Satellite-based estimates of groundwater depletion in the Badain Jaran Desert, China
,
2015,
Scientific Reports.
[13]
E. L. Kuniansky,et al.
Simulations of flow in the Edwards-Trinity aquifer system and contiguous hydraulically connected units, west-central Texas
,
1994
.
[14]
Massimo Menenti,et al.
CESat derived elevation changes of Tibetan lakes between 2003 and 2009 u
,
2012
.
[15]
Bridget R. Scanlon,et al.
Use of flow modeling to assess sustainability of groundwater resources in the North China Plain
,
2013
.
[16]
E. D. Gutentag,et al.
Digital simulation of ground-water flow in the High Plains Aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming
,
1986
.
[17]
Jeffrey P. Walker,et al.
THE GLOBAL LAND DATA ASSIMILATION SYSTEM
,
2004
.
[18]
B. Scanlon,et al.
Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA
,
2012
.
[19]
W. Feng,et al.
Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground‐based measurements
,
2013
.
[20]
Frank Flechtner,et al.
Status of the GRACE Follow-On Mission
,
2013
.
[21]
Alexander Y. Sun,et al.
Toward calibration of regional groundwater models using GRACE data
,
2012
.
[22]
Vitaly A. Zlotnik,et al.
Review: Regional groundwater flow modeling in heavily irrigated basins of selected states in the western United States
,
2013,
Hydrogeology Journal.
[23]
F. Landerer,et al.
Accuracy of scaled GRACE terrestrial water storage estimates
,
2012
.
[24]
S. M. de Jong,et al.
Large-scale groundwater modeling using global datasets: a test case for the Rhine-Meuse basin
,
2011
.