Multi-step loading of titania on mesoporous silica: Influence of the morphology and the porosity on the catalytic degradation of aqueous pollutants and VOCs

[1]  Mukesh Khare,et al.  Sick building syndrome—A case study in a multistory centrally air-conditioned building in the Delhi City , 2007 .

[2]  L. T. Wong,et al.  Evaluation of professional choice of sampling locations for indoor air quality assessment , 2007 .

[3]  G. van Tendeloo,et al.  Multistep loading of titania nanoparticles in the mesopores of SBA-15 for enhanced photocatalytic activity. , 2007, Journal of nanoscience and nanotechnology.

[4]  Bjarne W. Olesen,et al.  The philosophy behind EN15251: Indoor environmental criteria for design and calculation of energy performance of buildings , 2007 .

[5]  M. Tadé,et al.  Volatile organic compounds in indoor environment and photocatalytic oxidation: state of the art. , 2007, Environment international.

[6]  Jo Dewulf,et al.  Efficient toluene abatement in indoor air by a plasma catalytic hybrid system , 2007 .

[7]  O. I. Stathopoulou,et al.  Indoor air quality in a dentistry clinic. , 2007, The Science of the total environment.

[8]  Liping Yang,et al.  Degradation of indoor gaseous formaldehyde by hybrid VUV and TiO2/UV processes , 2007 .

[9]  R. Kikuchi,et al.  Preparation of silica-modified TiO2 and application to dye-sensitized solar cells , 2006 .

[10]  L. Morawska,et al.  Droplet fate in indoor environments, or can we prevent the spread of infection? , 2006, Indoor air.

[11]  V. Meynen,et al.  Structural features and photocatalytic behaviour of titania deposited within the pores of SBA-15 , 2006 .

[12]  P. Schulz,et al.  Adsorption of reactive dyes on titania-silica mesoporous materials. , 2006, Journal of colloid and interface science.

[13]  A. Jiménez-lópez,et al.  Synthesis and characterization of mixed silica/zirconia and silica/titania porous phospate heterostructures (PPH) , 2006 .

[14]  Yi Zhang,et al.  Morphosynthesis route to large-pore SBA-15 microspheres , 2006 .

[15]  D. Su,et al.  Use of mesoporous SBA-15 for nanostructuring titania for photocatalytic applications , 2006 .

[16]  Wei Wang,et al.  Multistep impregnation method for incorporation of high amount of titania into SBA-15 , 2006 .

[17]  Y. Segura,et al.  Diffusion effects in SBA-15 and its plugged analogous by a deposition of metal–acetylacetonate complexes , 2005 .

[18]  M. Ray,et al.  Photocatalytic degradation of orange II by TiO2 catalysts supported on adsorbents , 2004 .

[19]  Kun-Ho Park,et al.  Heterogeneous photocatalysis of aromatic and chlorinated volatile organic compounds (VOCs) for non-occupational indoor air application. , 2004, Chemosphere.

[20]  Bao-hang Han,et al.  Simple synthesis route to monodispersed SBA-15 silica rods. , 2004, Journal of the American Chemical Society.

[21]  X. Bao,et al.  Direct synthesis, characterization and catalytic activity of titanium-substituted SBA-15 mesoporous molecular sieves , 2004 .

[22]  John A. Hoskins,et al.  Health Effects due to Indoor Air Pollution , 2003 .

[23]  D. Zhao,et al.  High‐Yield Synthesis of Periodic Mesoporous Silica Rods and Their Replication to Mesoporous Carbon Rods , 2002 .

[24]  Takahira Yamaguchi,et al.  Synthesis, characterization and catalytic properties of titania–silica catalysts , 2002 .

[25]  B. Weckhuysen,et al.  Plugged hexagonal templated silica: a unique micro- and mesoporous composite material with internal silica nanocapsules. , 2002, Chemical communications.

[26]  M. Haruta,et al.  Performance of Au/TiO2 catalyst under ambient conditions , 2002 .

[27]  G. Stucky,et al.  Microemulsion Templating of Siliceous Mesostructured Cellular Foams with Well-Defined Ultralarge Mesopores , 2000 .

[28]  T. Bein,et al.  Inclusion Chemistry in Periodic Mesoporous Hosts , 1998 .

[29]  Bradley F. Chmelka,et al.  Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures , 1998 .

[30]  Fredrickson,et al.  Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores , 1998, Science.

[31]  W. Jardim,et al.  Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide , 1997 .

[32]  A. Sayari Catalysis by Crystalline Mesoporous Molecular Sieves , 1996 .

[33]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[34]  N. Serpone,et al.  Photocatalysis: Fundamentals and Applications , 1989 .

[35]  D. Leung,et al.  Solar photocatalytic degradation of gaseous formaldehyde by sol–gel TiO2 thin film for enhancement of indoor air quality , 2004 .

[36]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[37]  藤嶋 昭,et al.  TiO[2] photocatalysis : fundamentals and applications , 1999 .

[38]  Bradley F. Chmelka,et al.  MESOCELLULAR SILICEOUS FOAMS WITH UNIFORMLY SIZED CELLS AND WINDOWS , 1999 .

[39]  Francisco Javier Rey-Martínez,et al.  Study on environmental quality of a surgical block , 1999 .

[40]  B. Seifert,et al.  Losses of benzo(a)pyrene under the conditions of high-volume sampling , 1980 .