On partially observed competing risk model under generalized progressive hybrid censoring for Lomax distribution

ABSTRACT We study a competing risks model under the assumption that latent failure times follow family of Lomax distributions. We obtain various inferences for model parameters when causes of failure are partially known and lifetime data are observed using a generalized progressive hybrid censoring scheme. The existence and uniqueness properties of maximum likelihood estimators of unknown parameters are established. Bayes estimators and associated credible intervals are also obtained. In addition, various inferences for unknown parameters are derived under order-restricted shape parameters of Lomax distributions. Finally, a simulation study is conducted to evaluate the performance of the proposed estimates. A real data set is also analysed for illustration purposes.

[1]  Ritwik Bhattacharya,et al.  Inference and optimum life testing plans based on Type-II progressive hybrid censored generalized exponential data , 2020, Commun. Stat. Simul. Comput..

[2]  D. Kundu,et al.  Bayesian Inference for Weibull Distribution under the Balanced Joint Type-II Progressive Censoring Scheme , 2020, American Journal of Mathematical and Management Sciences.

[3]  Sukhdev Singh,et al.  Statistical Inference for Lognormal Distribution with Type-I Progressive Hybrid Censored Data , 2018, American Journal of Mathematical and Management Sciences.

[4]  Liang Wang,et al.  Inference for Weibull Competing Risks Data Under Generalized Progressive Hybrid Censoring , 2018, IEEE Transactions on Reliability.

[5]  Y. Tripathi,et al.  Parameter Estimation for a Burr XII Distribution under Progressive Censoring , 2017 .

[6]  D. Kundu,et al.  Point and Interval Estimation of Weibull Parameters Based on Joint Progressively Censored Data , 2017, Sankhya B.

[7]  D. Kundu,et al.  On generalized progressive hybrid censoring in presence of competing risks , 2017, Metrika.

[8]  Umesh Singh,et al.  Bayesian Estimation for Poisson-exponential Model under Progressive Type-II Censoring Data with Binomial Removal and Its Application to Ovarian Cancer Data , 2016, Commun. Stat. Simul. Comput..

[9]  Liang Wang Estimation for exponential distribution based on competing risk middle censored data , 2016 .

[10]  Sanjit K. Mitra,et al.  Bayesian Analysis of a Simple Step-Stress Model Under Weibull Lifetimes , 2015, IEEE Transactions on Reliability.

[11]  Hokeun Sun,et al.  Exact likelihood inference for an exponential parameter under generalized progressive hybrid censoring scheme , 2015 .

[12]  Sanku Dey,et al.  On progressively censored generalized inverted exponential distribution , 2014 .

[13]  Y. Tripathi,et al.  Inference on unknown parameters of a Burr distribution under hybrid censoring , 2013 .

[14]  Debasis Kundu,et al.  Bayesian planning and inference of a progressively censored sample from linear hazard rate distribution , 2013, Comput. Stat. Data Anal..

[15]  Debasis Kundu,et al.  Inference and optimal censoring schemes for progressively censored Birnbaum–Saunders distribution , 2013 .

[16]  Chien-Tai Lin,et al.  On progressive hybrid censored exponential distribution , 2012 .

[17]  Chien-Tai Lin,et al.  Inference for the Weibull distribution with progressive hybrid censoring , 2012, Comput. Stat. Data Anal..

[18]  D. Kundu,et al.  Bayesian analysis of progressively censored competing risks data , 2011 .

[19]  Erhard Cramer,et al.  Progressively Type-II censored competing risks data from Lomax distributions , 2011, Comput. Stat. Data Anal..

[20]  Mohammad Z. Raqab,et al.  Prediction for Pareto distribution based on progressively Type-II censored samples , 2010, Comput. Stat. Data Anal..

[21]  M. Ganjali,et al.  Simultaneous Confidence Intervals for the Parameters of Pareto Distribution under Progressive Censoring , 2009 .

[22]  Debasis Kundu,et al.  Bayesian Inference and Life Testing Plan for the Weibull Distribution in Presence of Progressive Censoring , 2008, Technometrics.

[23]  Ingram Olkin,et al.  Life Distributions: Structure of Nonparametric, Semiparametric, and Parametric Families , 2007 .

[24]  Debasis Kundu,et al.  On hybrid censored Weibull distribution , 2007 .

[25]  Melania Pintilie,et al.  Competing Risks: A Practical Perspective , 2006 .

[26]  Debasis Kundu,et al.  Analysis of incomplete data in presence of competing risks among several groups , 2006, IEEE Transactions on Reliability.

[27]  Debasis Kundu,et al.  Analysis of Type-II progressively hybrid censored data , 2006, Comput. Stat. Data Anal..

[28]  Chanseok Park,et al.  Parametric inference of incomplete data with competing risks among several groups , 2004, IEEE Transactions on Reliability.

[29]  Gordon Johnston,et al.  Statistical Models and Methods for Lifetime Data , 2003, Technometrics.

[30]  N. Balakrishnan,et al.  Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution , 2003 .

[31]  M. A. M. Ali Mousa,et al.  Inference and prediction for pareto progressively censored data , 2001 .

[32]  M. Crowder Classical Competing Risks , 2001 .

[33]  N. Balakrishnan,et al.  Progressive Censoring: Theory, Methods, and Applications , 2000 .

[34]  M. Bryson Heavy-Tailed Distributions: Properties and Tests , 1974 .

[35]  K. Lomax Business Failures: Another Example of the Analysis of Failure Data , 1954 .

[36]  Narayanaswamy Balakrishnan,et al.  The Art of Progressive Censoring , 2014 .

[37]  Bo Henry Lindqvist,et al.  Competing risks , 2014, Lifetime data analysis.

[38]  Ismihan Bayramoglu,et al.  Expected values of the number of failures for two populations under joint Type-II progressive censoring , 2009 .

[39]  Narayanaswamy Balakrishnan,et al.  Exact Likelihood Inference for an Exponential Parameter Under Progressive Hybrid Censoring Schemes , 2008 .

[40]  A. Childs,et al.  Conditional Inference for the Parameters of Pareto Distributions when Observed Samples are Progressively Censored , 2000 .

[41]  Edsel A. Peña,et al.  Bayes Estimation for the Marshall-Olkin Exponential Distribution , 1990 .