Target prediction and a statistical sampling algorithm for RNA–RNA interaction

Motivation: It has been proven that the accessibility of the target sites has a critical influence on RNA–RNA binding, in general and the specificity and efficiency of miRNAs and siRNAs, in particular. Recently, O(N6) time and O(N4) space dynamic programming (DP) algorithms have become available that compute the partition function of RNA–RNA interaction complexes, thereby providing detailed insights into their thermodynamic properties. Results: Modifications to the grammars underlying earlier approaches enables the calculation of interaction probabilities for any given interval on the target RNA. The computation of the ‘hybrid probabilities’ is complemented by a stochastic sampling algorithm that produces a Boltzmann weighted ensemble of RNA–RNA interaction structures. The sampling of k structures requires only negligible additional memory resources and runs in O(k·N3). Availability: The algorithms described here are implemented in C as part of the rip package. The source code of rip2 can be downloaded from http://www.combinatorics.cn/cbpc/rip.html and http://www.bioinf.uni-leipzig.de/Software/rip.html. Contact: duck@santafe.edu Supplementary information: Supplementary data are available at Bioinformatics online.

[1]  Walter Fontana,et al.  Fast folding and comparison of RNA secondary structures , 1994 .

[2]  Erik Winfree,et al.  Thermodynamic Analysis of Interacting Nucleic Acid Strands , 2007, SIAM Rev..

[3]  J. Vogel,et al.  Hfq-dependent regulation of OmpA synthesis is mediated by an antisense RNA. , 2005, Genes & development.

[4]  G. Storz An Expanding Universe of Noncoding RNAs , 2002, Science.

[5]  J. Goodrich,et al.  An RNA transcriptional regulator templates its own regulatory RNA. , 2007, Nature chemical biology.

[6]  Michael Kertesz,et al.  The role of site accessibility in microRNA target recognition , 2007, Nature Genetics.

[7]  Stefan L Ameres,et al.  Molecular Basis for Target RNA Recognition and Cleavage by Human RISC , 2007, Cell.

[8]  Jörg Schultz,et al.  HMM Logos for visualization of protein families , 2004, BMC Bioinformatics.

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  J. McCaskill The equilibrium partition function and base pair binding probabilities for RNA secondary structure , 1990, Biopolymers.

[11]  R. Benne,et al.  RNA editing in trypanosomes , 1992, Molecular Biology Reports.

[12]  Hamidreza Chitsaz,et al.  A partition function algorithm for interacting nucleic acid strands , 2009, Bioinform..

[13]  Michael T. McManus,et al.  Gene silencing in mammals by small interfering RNAs , 2002, Nature Reviews Genetics.

[14]  C. Lawrence,et al.  A statistical sampling algorithm for RNA secondary structure prediction. , 2003, Nucleic acids research.

[15]  Sean R. Eddy,et al.  Evaluation of several lightweight stochastic context-free grammars for RNA secondary structure prediction , 2004, BMC Bioinformatics.

[16]  Tatsuya Akutsu,et al.  Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots , 2000, Discret. Appl. Math..

[17]  J. Vogel,et al.  Translational Control and Target Recognition by Escherichia Coli Small Rnas in Vivo , 2022 .

[18]  L. Argaman,et al.  fhlA repression by OxyS RNA: kissing complex formation at two sites results in a stable antisense-target RNA complex. , 2000, Journal of molecular biology.

[19]  Elen aRiva san A Dynamic Programming Algorithm for RNA Structure Prediction Including Pseudoknots , 1999 .

[20]  Rolf Backofen,et al.  Fast prediction of RNA-RNA interaction , 2009, Algorithms for Molecular Biology.

[21]  R. Benne,et al.  RNA editing in trypanosomes , 1992, Molecular Biology Reports.

[22]  G. Storz,et al.  Target prediction for small, noncoding RNAs in bacteria , 2006, Nucleic acids research.

[23]  H. Hoos,et al.  HotKnots: heuristic prediction of RNA secondary structures including pseudoknots. , 2005, RNA.

[24]  Georg Sczakiel,et al.  The activity of siRNA in mammalian cells is related to structural target accessibility: a comparison with antisense oligonucleotides. , 2003, Nucleic acids research.

[25]  Hamidreza Chitsaz,et al.  biRNA: Fast RNA-RNA Binding Sites Prediction , 2009, WABI.

[26]  R. Benne,et al.  RNA editing in trypanosomes. The us(e) of guide RNAs. , 1992, Molecular biology reports.

[27]  A. Hüttenhofer,et al.  The expanding snoRNA world. , 2002, Biochimie.

[28]  R. Giegerich,et al.  Fast and effective prediction of microRNA/target duplexes. , 2004, RNA.

[29]  Jörg Vogel,et al.  Sensory and Regulatory RNAs in Prokaryotes: A New German Research Focus , 2007, RNA biology.

[30]  Peter F. Stadler,et al.  Thermodynamics of RNA-RNA Binding , 2006, German Conference on Bioinformatics.

[31]  Peter F. Stadler,et al.  Partition function and base pairing probabilities of RNA heterodimers , 2006, Algorithms for Molecular Biology.

[32]  Christian M. Reidys,et al.  Partition function and base pairing probabilities for RNA-RNA interaction prediction , 2009, Bioinform..

[33]  Peter F. Stadler,et al.  RNAsnoop: efficient target prediction for H/ACA snoRNAs , 2010, Bioinform..

[34]  J. Steitz,et al.  The expanding universe of noncoding RNAs. , 2006, Cold Spring Harbor symposia on quantitative biology.

[35]  A. Condon,et al.  Secondary structure prediction of interacting RNA molecules. , 2005, Journal of molecular biology.

[36]  Leonie Ringrose,et al.  Non-coding RNAs in Polycomb/Trithorax regulation , 2009, RNA biology.

[37]  David Sankoff,et al.  RNA secondary structures and their prediction , 1984 .

[38]  J. Sabina,et al.  Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. , 1999, Journal of molecular biology.

[39]  S. Mneimneh On the Approximation of Optimal Structures for RNA-RNA Interaction , 2009, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[40]  Rolf Backofen,et al.  IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions , 2008, Bioinform..

[41]  Christian M. Reidys,et al.  A COMBINATORIAL FRAMEWORK FOR RNA TERTIARY INTERACTION , 2007, 0710.3523.

[42]  Peter F. Stadler,et al.  Translational Control by RNA-RNA Interaction: Improved Computation of RNA-RNA Binding Thermodynamics , 2008, BIRD.

[43]  Kaizhong Zhang,et al.  RNA-RNA Interaction Prediction and Antisense RNA Target Search , 2006, J. Comput. Biol..

[44]  P. Schuster,et al.  Algorithm independent properties of RNA secondary structure predictions , 1996, European Biophysics Journal.

[45]  Robert Giegerich,et al.  Algebraic Dynamic Programming , 2002, AMAST.

[46]  D. Touati,et al.  Hfq, a new chaperoning role: binding to messenger RNA determines access for small RNA regulator , 2004, The EMBO journal.

[47]  F. Slack,et al.  Control of developmental timing by small temporal RNAs: a paradigm for RNA‐mediated regulation of gene expression , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[48]  Peter F. Stadler,et al.  RNA Secondary Structures , 2006 .

[49]  D. Pervouchine IRIS: intermolecular RNA interaction search. , 2004, Genome informatics. International Conference on Genome Informatics.