Design of Surface Plasmon Nanolaser Based on MoS2

The paper has proposed a new structure based on MoS2. The electric field distribution, the locality and the loss of the mode, and the threshold under different geometric shapes and parameters are investigated using COMSOL Multiphysics software, based on the finite element method. The different influenced degree of each component is also analyzed. Simulation results reveal that this kind of nanolaser has a low loss and high field confinement ability, the radius of CdS and Ag make a major contribution to the low loss and low threshold, and field confinement ability is mainly affected by the height of air gap. Under optimal parameters, effective propagation loss is only 0.00013, and the lasing threshold can be as low as 0.11 μm−1. The results provide theory and technique support to the field of new nanolaser design.

[1]  M. Patrini,et al.  Fluorescence excitation enhancement by Bloch surface wave in all-polymer one- dimensional photonic structure , 2014 .

[2]  D. Koller,et al.  Leakage radiation microscopy of surface plasmon polaritons , 2008, 1002.0725.

[3]  Extending the Propagation Distance of a Silver Nanowire Plasmonic Waveguide with a Dielectric Multilayer Substrate. , 2017, Nano letters.

[4]  Francesco Michelotti,et al.  Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications , 2007 .

[5]  Yingzhou Huang,et al.  Branched silver nanowires as controllable plasmon routers. , 2010, Nano letters.

[6]  M. Qiu,et al.  Identification and control of multiple leaky plasmon modes in silver nanowires , 2016 .

[7]  Davide Comoretto,et al.  Demonstration of fluorescence enhancement via Bloch surface waves in all-polymer multilayer structures. , 2016, Physical chemistry chemical physics : PCCP.

[8]  Peter Nordlander,et al.  Unidirectional broadband light emission from supported plasmonic nanowires. , 2011, Nano letters.

[9]  S. Bozhevolnyi,et al.  Waveguiding with Surface Plasmon Polaritons , 2014 .

[10]  Xiaorui Tian,et al.  Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks. , 2011, Nano letters.

[11]  Lukas Novotny,et al.  Integrated nanophotonics based on nanowire plasmons and atomically thin material , 2014, 1404.1853.

[12]  H. Herzig,et al.  Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation , 2010 .

[13]  Weijing Kong,et al.  Fiber-to-Fiber Optical Switching Based on Gigantic Bloch-Surface-Wave-Induced Goos–Hanchen Shifts , 2013, IEEE Photonics Journal.

[14]  P. Monnier,et al.  Small volume excitation and enhancement of dye fluorescence on a 2D photonic crystal surface. , 2010, Optics express.

[15]  Zheng Zheng,et al.  Optimizing loss of the dielectric stack for Bloch-surface-wave sensors under different interrogation schemes , 2017 .

[16]  H. Ming,et al.  Manipulating Propagation Constants of Silver Nanowire Plasmonic Waveguide Modes Using a Dielectric Multilayer Substrate , 2018, Applied sciences.

[17]  W. Knoll,et al.  Bloch surface wave-enhanced fluorescence biosensor. , 2013, Biosensors & bioelectronics.

[18]  L. Dominici,et al.  Experimental determination of the sensitivity of Bloch surface waves based sensors. , 2010, Optics express.

[19]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[20]  L. Estrada,et al.  10000 times volume reduction for fluorescence correlation spectroscopy using nano-antennas. , 2008, Optics express.

[21]  R. Asgari,et al.  Plasmonic Physics of 2 D Crystalline Materials , 2018 .

[22]  Hongxing Xu,et al.  Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides. , 2012, ACS nano.

[23]  Jörg Opitz,et al.  Gating Hysteresis as an Indicator for Silicon Nanowire FET Biosensors , 2018, Applied Sciences.

[24]  A. M. Merzlikin,et al.  Approach to visualization of and optical sensing by Bloch surface waves in noble or base metal-based plasmonic photonic crystal slabs. , 2014, Applied optics.

[25]  Hong Wei,et al.  Controlling the radiation direction of propagating surface plasmons on silver nanowires , 2014 .

[26]  N. Scherer,et al.  Controlling plasmonic wave packets in silver nanowires. , 2010, Nano letters.

[27]  P. Berini,et al.  Bloch long-range surface plasmon polaritons in metallic stripe waveguides , 2017, Conference on Lasers and Electro-Optics.

[28]  A. Bouhelier,et al.  Imaging symmetry-selected corner plasmon modes in penta-twinned crystalline Ag nanowires. , 2011, ACS nano.

[29]  Q. Zhan Cylindrical vector beams: from mathematical concepts to applications , 2009 .

[30]  H. Herzig,et al.  Detection of protein aggregation with a Bloch surface wave based sensor , 2011 .

[31]  Yuhang Wan,et al.  Hybrid plasmon waveguide leveraging Bloch surface polaritons for sub-wavelength confinement , 2013 .

[32]  V. Konopsky,et al.  A biosensor based on photonic crystal surface waves with an independent registration of the liquid refractive index. , 2010, Biosensors & bioelectronics.

[33]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[34]  Zhanghua Han,et al.  Radiation guiding with surface plasmon polaritons , 2013, Reports on progress in physics. Physical Society.

[35]  G. Agrawal,et al.  Guided plasmonic modes of anisotropic slot waveguides , 2012, Nanotechnology.

[36]  R. Asgari,et al.  Plasmonic physics of 2D crystalline materials , 2018, 1802.01291.

[37]  Hong Wei,et al.  Direction-resolved radiation from polarization-controlled surface plasmon modes on silver nanowire antennas. , 2016, Nanoscale.

[38]  Xiaorui Tian,et al.  Highly tunable propagating surface plasmons on supported silver nanowires , 2013, Proceedings of the National Academy of Sciences.

[39]  Weijing Kong,et al.  High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors , 2014, IEEE Photonics Conference 2012.

[40]  Hervé Rigneault,et al.  Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence. , 2008, Optics express.

[41]  X. Zhang,et al.  A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation , 2008 .

[42]  F. Michelotti,et al.  A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals. , 2013, Optics express.

[43]  Antao Chen,et al.  Integration of photonic and silver nanowire plasmonic waveguides. , 2008, Nature nanotechnology.

[44]  F. Michelotti,et al.  Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal , 2011 .

[45]  K. Novoselov,et al.  Bloch Surface Waves for MoS2 Emission Coupling and Polariton Systems , 2017 .

[46]  H. Rigneault,et al.  Nanoaperture-enhanced signal-to-noise ratio in fluorescence correlation spectroscopy. , 2009, Analytical chemistry.