Nanomaterials-based electrochemical immunosensors for cardiac troponin recognition: An illustrated review

Abstract Cardiac troponins (I and T) have been recommended as the biomarkers of choice for the serological diagnosis and prognosis of Acute Myocardial Infarction (AMI) because of their high sensitivity and specificity. Sensor designing has been developed by nanotechnology revolution presenting faster detection and better reproducibility. This review highlights the nanotechnology impact on electrochemical immunosensor that have been developed for the determination of cardiac troponin and provides an overview of the various types of nano based diagnostic methods, along with significant advances over the last several years in related technologies. It is critically important to diagnose Cardio Vascular Disease (CVD) at early stages of its progression, which allows successful treatment and recovery of patients. Therefore, it is essential to develop simple and sensitive CVD diagnostic methods that can detect cardiac troponin as biomarker based on different types of nanomaterials and their developmental and implicational aspects at very low concentrations in biological fluids.

[1]  Timothy Londergan,et al.  Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies. , 2006, Current opinion in biotechnology.

[2]  R. Lequin Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). , 2005, Clinical chemistry.

[3]  R. M. Iost,et al.  Layer-by-layer self-assembly and electrochemistry: applications in biosensing and bioelectronics. , 2012, Biosensors & bioelectronics.

[4]  J. Hart,et al.  Voltammetric behaviour of ascorbic acid at a graphite-epoxy composite electrode chemically modified with cobalt phthalocyanine and its amperometric determination in multivitamin preparations , 1990 .

[5]  Shaojun Dong,et al.  Self-assembled monolayers of thiols on gold electrodes for bioelectrochemistry and biosensors , 1997 .

[6]  T. Ohsaka,et al.  A carbon fiber microelectrode-based third-generation biosensor for superoxide anion. , 2005, Biosensors & bioelectronics.

[7]  J. Cross,et al.  Surface plasmon resonance biosensor with high anti-fouling ability for the detection of cardiac marker troponin T. , 2011, Analytica chimica acta.

[8]  A. Deep,et al.  One step in-situ synthesis of amine functionalized graphene for immunosensing of cardiac marker cTnI. , 2015, Biosensors & bioelectronics.

[9]  M. Tahriri,et al.  Mechanochemical assisted synthesis and powder characteristics of nanostructure ceramic of α-Al2O3 at room temperature , 2009 .

[10]  P. Kim,et al.  Energy band-gap engineering of graphene nanoribbons. , 2007, Physical review letters.

[11]  P. Yáñez‐Sedeño,et al.  Gold nanoparticle-based electrochemical biosensors , 2005, Analytical and bioanalytical chemistry.

[12]  Yu Hoshino,et al.  The evolution of plastic antibodies , 2011 .

[13]  Min-Gon Kim,et al.  Development of a surface plasmon resonance-based immunosensor for the rapid detection of cardiac troponin I , 2011, Biotechnology Letters.

[14]  A. Ramanavičius,et al.  Electrochemical sensors based on conducting polymer—polypyrrole , 2006 .

[15]  A. Zamanian,et al.  Synthesis, Characterization and In Vitro Biological Evaluation of Sol-gel Derived Sr-containing Nano Bioactive Glass , 2017, Silicon.

[16]  Moon J. Kim,et al.  HIGHLY REPRODUCIBLE SINGLE POLYANILINE NANOWIRE USING ELECTROPHORESIS METHOD , 2008 .

[17]  R. Engstrom,et al.  Characterization of electrochemically pretreated glassy carbon electrodes , 1984 .

[18]  G. Beilman,et al.  Moderately elevated serum troponin concentrations are associated with increased morbidity and mortality rates in surgical intensive care unit patients , 2003, Critical care medicine.

[19]  M. Mozafari,et al.  The Use of Carbon Nanotubes to Reinforce 45S5 Bioglass-Based Scaffolds for Tissue Engineering Applications , 2013, BioMed research international.

[20]  R. F. Dutra,et al.  Potential of a simplified measurement scheme and device structure for a low cost label-free point-of-care capacitive biosensor. , 2009, Biosensors & bioelectronics.

[21]  F. Moztarzadeh,et al.  Nanocrystalline fluorine-substituted hydroxyapatite [Ca 5 (PO 4 ) 3 (OH) 1-x F x (0 ⩽ x ⩽ 1)] for biomedical applications: preparation and characterisation , 2012 .

[22]  Se Young Oh,et al.  Electrochemical detection of cardiac troponin I using a microchip with the surface-functionalized poly(dimethylsiloxane) channel. , 2007, Biosensors & bioelectronics.

[23]  P Atanasov,et al.  Immunosensors: electrochemical sensing and other engineering approaches. , 1998, Biosensors & bioelectronics.

[24]  Y. Gurbuz,et al.  A nanostructured-nickel based interdigitated capacitive transducer for biosensor applications , 2011 .

[25]  A. Jaffe,et al.  Analytical validation of a high-sensitivity cardiac troponin T assay. , 2010, Clinical chemistry.

[26]  J. Doery,et al.  Clozapine Associated Pericarditis and Elevated Troponin I , 2002, The Australian and New Zealand journal of psychiatry.

[27]  G. Urban,et al.  Polymer-modified microfluidic immunochip for enhanced electrochemical detection of troponin I , 2015 .

[28]  A. Spinelli,et al.  Gold nanoparticles hosted in a water-soluble silsesquioxane polymer applied as a catalytic material onto an electrochemical sensor for detection of nitrophenol isomers. , 2014, Journal of hazardous materials.

[29]  A. Zamanian,et al.  Novel calcium hydroxide/nanohydroxyapatite composites for dental applications: in vitro study , 2010 .

[30]  F. T. Moreira,et al.  Artificial antibodies for troponin T by its imprinting on the surface of multiwalled carbon nanotubes: its use as sensory surfaces. , 2011, Biosensors & bioelectronics.

[31]  Mohammad Mazloum-Ardakani,et al.  Screen-printed electrodes for biosensing: a review (2008–2013) , 2014, Microchimica Acta.

[32]  F. Moztarzadeh,et al.  Hydrothermal Synthesis and Characterization of TiO2-Derived Nanotubes for Biomedical Applications , 2016 .

[33]  F. Moztarzadeh,et al.  Synthesis, characterisation and thermal properties of Ca5(PO4)3(OH)1−xFx (0⩽x⩽1) nanopowders via pH cycling method , 2011 .

[34]  Rashid Bashir,et al.  Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria. , 2008, Biotechnology advances.

[35]  M. Tahriri,et al.  The influence of some processing conditions on host crystal structure and phosphorescence properties of SrAl2O4:Eu2+, Dy3+ nanoparticle pigments synthesized by combustion technique , 2010 .

[36]  F. Moztarzadeh,et al.  Ammonia-free method for synthesis of CdS nanocrystalline thin films through chemical bath deposition technique , 2009 .

[37]  F. Moztarzadeh,et al.  Development of an electrochemical sulfite biosensor by immobilization of sulfite oxidase on conducti , 2010 .

[38]  M. Tahriri,et al.  SYNTHESIS AND CHARACTERIZATION OF HYDROXYAPATITE NANOCRYSTALS VIA CHEMICAL PRECIPITATION TECHNIQUE , 2008 .

[39]  J. Januzzi,et al.  Clinical Applications of Highly Sensitive Troponin Assays , 2010, Cardiology in review.

[40]  Yuichiro Maéda,et al.  Structure of the core domain of human cardiac troponin in the Ca2+-saturated form , 2003, Nature.

[41]  Olof Ramström,et al.  The Emerging Technique of Molecular Imprinting and Its Future Impact on Biotechnology , 1996, Bio/Technology.

[42]  H. Gallardo,et al.  Troponin T immunosensor based on liquid crystal and silsesquioxane-supported gold nanoparticles. , 2014, Bioconjugate chemistry.

[43]  C. Steinem,et al.  Label-free detection of protein-ligand interactions by the quartz crystal microbalance. , 2005, Methods in molecular biology.

[44]  H. Gallardo,et al.  A label-free electrochemical immunosensor based on an ionic organic molecule and chitosan-stabilized gold nanoparticles for the detection of cardiac troponin T. , 2014, The Analyst.

[45]  Ilaria Palchetti,et al.  Disposable electrodes modified with multi-wall carbon nanotubes for biosensor applications , 2008 .

[46]  Jun‐Jie Zhu,et al.  Electrochemical immunosensor for simultaneous detection of dual cardiac markers based on a poly(dimethylsiloxane)-gold nanoparticles composite microfluidic chip: a proof of principle. , 2010, Clinical chemistry.

[47]  Ian Ivar Suni,et al.  Minimizing Nonspecific Adsorption in Protein Biosensors that Utilize Electrochemical Impedance Spectroscopy , 2010 .

[48]  L. Kubota,et al.  An o-aminobenzoic acid film-based immunoelectrode for detection of the cardiac troponin T in human serum , 2013 .

[49]  K R Rogers,et al.  Principles of affinity-based biosensors , 2000, Molecular biotechnology.

[50]  A. Masotti,et al.  Polyethylenimine in medicinal chemistry. , 2008, Current medicinal chemistry.

[51]  Hye-Weon Yu,et al.  Electrochemical immunoassay using quantum dot/antibody probe for identification of cyanobacterial hepatotoxin microcystin-LR , 2009, Analytical and bioanalytical chemistry.

[52]  Su He Wang,et al.  Polyethyleneimine-Mediated Functionalization of Multiwalled Carbon Nanotubes: Synthesis, Characterization, and In Vitro Toxicity Assay , 2009 .

[53]  Martin Pumera,et al.  Direct voltammetric determination of gold nanoparticles using graphite-epoxy composite electrode , 2005 .

[54]  N. Nezafati,et al.  Development of a composite based on hydroxyapatite and magnesium and zinc‐containing sol–gel-derived bioactive glass for bone substitute applications , 2012 .

[55]  Jing Luo,et al.  A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. , 2012, Analytica chimica acta.

[56]  F. Moztarzadeh,et al.  Micro-Emulsion Synthesis, Surface Modification, and Photophysical Properties of ${\rm Zn}_{1-x}~{\rm Mn}_{\rm x} {\rm S}$ Nanocrystals for Biomolecular Recognition , 2012, IEEE Transactions on NanoBioscience.

[57]  R. F. Dutra,et al.  A carbon nanotube-based electrochemical immunosensor for cardiac troponin T , 2013 .

[58]  Lobat Tayebi,et al.  Glycated hemoglobin-detection methods based on electrochemical biosensors , 2015 .

[59]  R. Khan,et al.  Chitosan/polyaniline hybrid conducting biopolymer base impedimetric immunosensor to detect Ochratoxin-A. , 2009, Biosensors & bioelectronics.

[60]  Wei Wang,et al.  PDMS gold nanoparticle composite film-based silver enhanced colorimetric detection of cardiac troponin I , 2010 .

[61]  M. Tahriri,et al.  Development of Optical Biosensor Technologies for Cardiac Troponin Recognition , 2016 .

[62]  Jaegeun Noh,et al.  Structure and electrochemical behavior of aromatic thiol self-assembled monolayers on Au(111) , 2006 .

[63]  J. Ho,et al.  Disposable electrochemical immunosensor for carcinoembryonic antigen using ferrocene liposomes and MWCNT screen-printed electrode. , 2009, Biosensors & bioelectronics.

[64]  Dan Du,et al.  Graphene-based immunosensor for electrochemical quantification of phosphorylated p53 (S15). , 2011, Analytica chimica acta.

[65]  Wen-Chang Shen,et al.  Nanoparticle-based electrochemiluminescence immunosensor with enhanced sensitivity for cardiac troponin I using N-(aminobutyl)-N-(ethylisoluminol)-functionalized gold nanoparticles as labels. , 2011, Biosensors & bioelectronics.

[66]  Gregory P. Crawford,et al.  Liquid-crystal materials find a new order in biomedical applications. , 2007, Nature materials.

[67]  Fred S Apple,et al.  Third universal definition of myocardial infarction , 2012 .

[68]  C. Berger,et al.  Electronic Confinement and Coherence in Patterned Epitaxial Graphene , 2006, Science.

[69]  M. Mozafari,et al.  Development of 3D Bioactive Nanocomposite Scaffolds Made from Gelatin and Nano Bioactive Glass for Biomedical Applications , 2010 .

[70]  M. Tahriri,et al.  Investigation of phase transition of γ-alumina to α-alumina via mechanical milling method , 2008 .

[71]  M. P. Sotomayor,et al.  Disposable immunosensor for human cardiac troponin T based on streptavidin-microsphere modified screen-printed electrode. , 2010, Biosensors & bioelectronics.

[72]  G. Palleschi,et al.  An electrochemical immunosensor for aflatoxin M1 determination in milk using screen-printed electrodes. , 2005, Biosensors & bioelectronics.

[73]  Melissa A Daubert,et al.  The utility of troponin measurement to detect myocardial infarction: review of the current findings , 2010, Vascular health and risk management.

[74]  E. Benvenutti,et al.  Gold nanoparticle/charged silsesquioxane films immobilized onto Al/SiO2 surface applied on the electrooxidation of nitrite , 2012, Journal of Solid State Electrochemistry.

[75]  L. Lagae,et al.  Local electrical detection of single nanoparticle plasmon resonance. , 2007, Nano letters.

[76]  J. Niazi,et al.  Biosensors for cardiac biomarkers detection: A review , 2012 .

[77]  F. Moztarzadeh,et al.  The Influence of Calcination Temperature on the Structural and Biological Characteristics of Hydrothermally Synthesized TiO2 Nanotube: In Vitro Study , 2016 .

[78]  P. He,et al.  A sensitive DNA electrochemical biosensor based on magnetite with a glassy carbon electrode modified by muti-walled carbon nanotubes in polypyrrole , 2005 .

[79]  Minsu Lee,et al.  Electrochemical Detection of Cardiac Biomarker Troponin I at Gold Nanoparticle-Modified ITO Electrode by Using Open Circuit Potential , 2011, International Journal of Electrochemical Science.

[80]  Joseph Wang,et al.  Electrochemical biosensors: towards point-of-care cancer diagnostics. , 2006, Biosensors & bioelectronics.

[81]  Richard G Compton,et al.  The use of nanoparticles in electroanalysis: an updated review , 2010, Analytical and bioanalytical chemistry.

[82]  Martin Pumera,et al.  Electrochemistry of graphene: new horizons for sensing and energy storage. , 2009, Chemical record.

[83]  S. Bose,et al.  Recent advances in graphene-based biosensors. , 2011, Biosensors & bioelectronics.

[84]  Minhee Yun,et al.  Electrochemically Grown Wires for Individually Addressable Sensor Arrays , 2004 .

[85]  María Pedrero,et al.  Electrochemical Biosensors for the Determination of Cardiovascular Markers: a Review , 2014 .

[86]  A. Jaffe,et al.  Troponin: the biomarker of choice for the detection of cardiac injury , 2005, Canadian Medical Association Journal.

[87]  Rajesh,et al.  Biomolecular immobilization on conducting polymers for biosensing applications. , 2007, Biomaterials.

[88]  M. A. Alonso-Lomillo,et al.  Recent developments in the field of screen-printed electrodes and their related applications. , 2007, Talanta.

[89]  M. Tahriri,et al.  Characterisation of binary (Fe3O4/SiO2) biocompatible nanocomposites as magnetic fluid , 2011 .

[90]  Kenzo Maehashi,et al.  Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. , 2007, Analytical chemistry.

[91]  J. Vörös,et al.  Electrochemical Biosensors - Sensor Principles and Architectures , 2008 .

[92]  Renata Kelly Mendes,et al.  Surface plasmon resonance immunosensor for human cardiac troponin T based on self-assembled monolayer. , 2007, Journal of pharmaceutical and biomedical analysis.

[93]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[94]  Yong Duk Han,et al.  A fluoro-microbead guiding chip for simple and quantifiable immunoassay of cardiac troponin I (cTnI). , 2011, Biosensors & bioelectronics.

[95]  María Soledad Belluzo,et al.  Assembling Amperometric Biosensors for Clinical Diagnostics , 2008, Sensors.

[96]  N. Gusev,et al.  Troponin: structure, properties, and mechanism of functioning. , 1999, Biochemistry. Biokhimiia.

[97]  S. Carrara,et al.  Gold nanoparticles mediated label-free capacitance detection of cardiac troponin I , 2012 .

[98]  M. Yun,et al.  Detection of Cardiac Biomarkers Using Single Polyaniline Nanowire-Based Conductometric Biosensors , 2012, Biosensors.

[99]  Hong Yang,et al.  A multichannel electrochemical detector coupled with an ELISA microtiter plate for the immunoassay of 2,4-dichlorophenoxyacetic acid , 2007 .

[100]  H. Fan,et al.  Electrochemical detection of DNA hybridization using a water-soluble branched polyethyleneimine–cobalt(III)–phenanthroline indicator and PNA probe on Au electrodes , 2010 .

[101]  M. Tahriri,et al.  Synthesis and characterization of nanocrystalline α-Al2O3 using Al and Fe2O3 (hematite) through mechanical alloying , 2009 .

[102]  Loïc J Blum,et al.  State of the art and recent advances in immunoanalytical systems. , 2006, Biosensors & bioelectronics.

[103]  L. Kubota,et al.  An SPR immunosensor for human cardiac troponin T using specific binding avidin to biotin at carboxymethyldextran-modified gold chip. , 2007, Clinica chimica acta; international journal of clinical chemistry.

[104]  M. Tahriri,et al.  A NOVEL METHOD FOR SYNTHESIS OF METASTABLE TETRAGONAL ZIRCONIA NANOPOWDERS AT LOW TEMPERATURES , 2011 .

[105]  John P. Hart,et al.  Recent developments in the design and application of screen-printed electrochemical sensors for biomedical, environmental and industrial analyses , 1997 .

[106]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[107]  Marie-Paule Pileni,et al.  Detection of DNA hybridization by gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy , 2003 .

[108]  I. O. Mazali,et al.  Chemical and photochemical formation of gold nanoparticles supported on viologen-functionalized SBA-15 , 2013 .

[109]  Bernd Büchner,et al.  Carbon nanotube based biomedical agents for heating, temperature sensoring and drug delivery , 2008, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[110]  R. Bushby,et al.  Liquid crystals that affected the world: discotic liquid crystals , 2011 .

[111]  Kwang-Cheol Lee,et al.  An electrochemical impedance biosensor with aptamer-modified pyrolyzed carbon electrode for label-free protein detection , 2008 .

[112]  R. F. Dutra,et al.  A carbon nanotube screen-printed electrode for label-free detection of the human cardiac troponin T. , 2013, Talanta.

[113]  H. Hong,et al.  Surface modification of the polyethyleneimine layer on silicone oxide film via UV radiation , 2009 .

[114]  Shoufang Xu,et al.  Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. , 2011, Chemical Society reviews.

[115]  F. Apple,et al.  Point-of-care i-STAT cardiac troponin I for assessment of patients with symptoms suggestive of acute coronary syndrome. , 2006, Clinical chemistry.

[116]  F. Moztarzadeh,et al.  Preparation, Characterization, and In Vitro Biological Evaluation of PLGA/Nano-Fluorohydroxyapatite (FHA) Microsphere-Sintered Scaffolds for Biomedical Applications , 2014, Applied Biochemistry and Biotechnology.

[117]  William R. Heineman,et al.  Nanotube electrodes and biosensors , 2007 .

[118]  Jun Zhang,et al.  Side-polished fiber as a sensor for the determination of nematic liquid crystal orientation , 2014 .

[119]  B D Sykes,et al.  Calcium-induced structural transition in the regulatory domain of human cardiac troponin C. , 1997, Biochemistry.

[120]  A. Jaffe,et al.  Validation of the 99th percentile cutoff independent of assay imprecision (CV) for cardiac troponin monitoring for ruling out myocardial infarction. , 2005, Clinical chemistry.

[121]  G. Toubin,et al.  Use of cardiac troponin I as a marker of perioperative myocardial ischemia. , 1995, The Annals of thoracic surgery.

[122]  Yuyan Shao,et al.  Graphene Based Electrochemical Sensors and Biosensors: A Review , 2010 .

[123]  M. Tahriri,et al.  Synthesis and characterization of nanocrystalline hydroxyapatite obtained by the wet chemical technique , 2010 .

[124]  Bansi D Malhotra,et al.  Recent advances in self-assembled monolayers based biomolecular electronic devices. , 2009, Biosensors & bioelectronics.

[125]  N. Pourmand,et al.  Label-Free Impedance Biosensors: Opportunities and Challenges. , 2007, Electroanalysis.

[126]  J. Lagerwall,et al.  A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology , 2012 .

[127]  Rasa Pauliukaite,et al.  Direct electron transfer of glucose oxidase at glassy carbon electrode modified with functionalized carbon nanotubes within a dihexadecylphosphate film , 2011 .

[128]  M. Mozafari,et al.  Green synthesis and characterisation of spherical PbS luminescent micro‐ and nanoparticles via wet chemical technique , 2011 .

[129]  Shusheng Zhang,et al.  Electrochemical DNA biosensor based on nanoporous gold electrode and multifunctional encoded DNA-Au bio bar codes. , 2008, Analytical chemistry.