Comparing Drools and ontology reasoning approaches for telecardiology decision support

Implantable cardioverter defibrillators can generate numerous alerts. Automatically classifying these alerts according to their severity hinges on the CHA2DS2VASc score. It requires some reasoning capabilities for interpreting the patient's data. We compared two approaches for implementing the reasoning module. One is based on the Drools engine, and the other is based on semantic web formalisms. Both were valid approaches with correct performances. For a broader domain, their limitations are the number and complexity of Drools rules and the performances of ontology-based reasoning, which suggests using the ontology for automatically generating a part of the Drools rules.