Energy transfer in photosynthesis: experimental insights and quantitative models.

We overview experimental and theoretical studies of energy transfer in the photosynthetic light-harvesting complexes LH1, LH2, and LHCII performed during the past decade since the discovery of high-resolution structure of these complexes. Experimental findings obtained with various spectroscopic techniques makes possible a modelling of the excitation dynamics at a quantitative level. The modified Redfield theory allows a precise assignment of the energy transfer pathways together with a direct visualization of the whole excitation dynamics where various regimes from a coherent motion of delocalized exciton to a hopping of localized excitations are superimposed. In a single complex it is possible to observe the switching between these regimes driven by slow conformational motion (as we demonstrate for LH2). Excitation dynamics under quenched conditions in higher-plant complexes is discussed.

[1]  N. Isaacs,et al.  The structure and thermal motion of the B800-850 LH2 complex from Rps.acidophila at 2.0A resolution and 100K: new structural features and functionally relevant motions. , 2003, Journal of molecular biology.

[2]  M. A. Bopp,et al.  Fluorescence and photobleaching dynamics of single light-harvesting complexes. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[3]  R. W. Visschers,et al.  Energy transfer in the B800–850 antenna complex of purple bacteria Rhodobacter sphaeroides: A study by spectral hole-burning , 1990 .

[4]  Thomas Renger,et al.  Ultrafast excitation energy transfer dynamics in photosynthetic pigment–protein complexes , 2001 .

[5]  W. W. Parson,et al.  Femtosecond Pump−Probe Spectroscopy of the B850 Antenna Complex of Rhodobacter sphaeroides at Room Temperature , 1999 .

[6]  G. Scholes,et al.  Energy transfer in light-harvesting complexes LHCII and CP29 of spinach studied with three pulse echo peak shift and transient grating. , 2003, Biophysical journal.

[7]  R. Cogdell,et al.  Energy Transfer Dynamics in LH2 Complexes of Rhodopseudomonas Acidophila Containing Only One B800 Molecule , 2001 .

[8]  Petra Fromme,et al.  Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution , 2001, Nature.

[9]  J. Kennis,et al.  Exciton Coherence and Energy Transfer in the LH2 Antenna Complex of Rhodopseudomonas acidophila at Low Temperature , 1997 .

[10]  B. Spring,et al.  Dipole Strengths in the Chlorophylls¶,† , 2003 .

[11]  R. Grondelle,et al.  Understanding the Energy Transfer Function of LHCII, the Major Light-Harvesting Complex of Green Plants† , 2001 .

[12]  Rienk van Grondelle,et al.  Fluorescence spectral fluctuations of single LH2 complexes from Rhodopseudomonas acidophila strain 10050. , 2004, Biochemistry.

[13]  R. Monshouwer,et al.  Exciton (De)Localization in the LH2 Antenna of Rhodobacter sphaeroides As Revealed by Relative Difference Absorption Measurements of the LH2 Antenna and the B820 Subunit , 1999 .

[14]  R. Grondelle,et al.  Exciton modeling of energy-transfer dynamics in the LHCII complex of higher plants: A redfield theory approach , 2003 .

[15]  R. Grondelle,et al.  Probing the many energy-transfer processes in the photosynthetic light-harvesting complex II at 77 K using energy-selective sub-picosecond transient absorption spectroscopy , 1996 .

[16]  Rienk van Grondelle,et al.  Low-intensity pump-probe spectroscopy on the B800 to B850 transfer in the light harvesting 2 complex of Rhodobacter sphaeroides , 1995 .

[17]  N. W. Isaacs,et al.  Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria , 1995, Nature.

[18]  R. Frese,et al.  Red shift of the zero crossing in the CD spectra of the LH2 antenna complex of Rhodopseudomonas acidophila: A structure-based study. , 1997 .

[19]  Graham R. Fleming,et al.  Influence of phonons on exciton transfer dynamics: comparison of the Redfield, Förster, and modified Redfield equations , 2002 .

[20]  C. Varotto,et al.  Chlorophyll Binding to Monomeric Light-harvesting Complex , 1999, The Journal of Biological Chemistry.

[21]  Fabrice Rappaport,et al.  Visualization of coherent nuclear motion in a membrane protein by femtosecond spectroscopy , 1993, Nature.

[22]  Eli Barkai,et al.  Theory of single-molecule spectroscopy: beyond the ensemble average. , 2004, Annual review of physical chemistry.

[23]  V. Sundström,et al.  Pump–probe spectroscopy of dissipative energy transfer dynamics in photosynthetic antenna complexes: A density matrix approach , 1997 .

[24]  W. Kühlbrandt,et al.  Mechanisms of photoprotection and nonphotochemical quenching in pea light‐harvesting complex at 2.5 Å resolution , 2005, The EMBO journal.

[25]  O. Somsen,et al.  Excited-state energy equilibration via subpicosecond energy transfer within the inhomogeneously broadened light-harvesting antenna of LH-1-only Rhodobacter sphaeroides mutants M2192 art room temperature and 4.2 K. , 1996 .

[26]  G. Small,et al.  SYMMETRY ADAPTED BASIS DEFECT PATTERNS FOR ANALYSIS OF THE EFFECTS OF ENERGY DISORDER ON CYCLIC ARRAYS OF COUPLED CHROMOPHORES , 1997 .

[27]  M. Jones,et al.  Vibrational coherence in bacterial reaction centers: spectroscopic characterisation of motions active during primary electron transfer , 1998 .

[28]  K. Schulten,et al.  The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum. , 1996, Structure.

[29]  S. Mukamel,et al.  Multiple Exciton Coherence Sizes in Photosynthetic Antenna Complexes viewed by Pump−Probe Spectroscopy , 1997 .

[30]  V. May,et al.  From Structure to Dynamics: Modeling Exciton Dynamics in the Photosynthetic Antenna PS1 , 2004 .

[31]  Rienk van Grondelle,et al.  Fluorescence spectroscopy of conformational changes of single LH2 complexes. , 2005, Biophysical journal.

[32]  R. Cogdell,et al.  Femtosecond and Hole-Burning Studies of B800's Excitation Energy Relaxation Dynamics in the LH2 Antenna Complex of Rhodopseudomonas acidophila (Strain 10050) , 1996 .

[33]  R. Schödel,et al.  Electron−Phonon Coupling in Solubilized LHC II Complexes of Green Plants Investigated by Line-Narrowing and Temperature-Dependent Fluorescence Spectroscopy , 2001 .

[34]  R. Monshouwer,et al.  Superradiance and Exciton Delocalization in Bacterial Photosynthetic Light-Harvesting Systems , 1997 .

[35]  V. May,et al.  Exciton exciton annihilation dynamics in chromophore complexes. II. Intensity dependent transient absorption of the LH2 antenna system. , 2004, The Journal of chemical physics.

[36]  F. Jelezko,et al.  Membrane Environment Reduces the Accessible Conformational Space Available to an Integral Membrane Protein , 2003 .

[37]  Graham R Fleming,et al.  Exciton analysis in 2D electronic spectroscopy. , 2005, The journal of physical chemistry. B.

[38]  V. Sundström,et al.  Energy transfer and relaxation dynamics in light-harvesting antenna complexes of photosynthetic bacteria , 1997 .

[39]  M. Rätsep,et al.  Self-trapped excitons in circular cacteriochlorophyll antenna complexes , 2003 .

[40]  L. Mets,et al.  Direct Observation of Ultrafast Energy-Transfer Processes in Light Harvesting Complex II , 1994 .

[41]  Tõnu Pullerits,et al.  Photosynthetic light-harvesting: Reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit , 1999 .

[42]  S. Mukamel,et al.  Bacteriochlorophyll and Carotenoid Excitonic Couplings in the LH2 System of Purple Bacteria , 2000 .

[43]  J. Wrachtrup,et al.  Spectroscopy on Single Light-Harvesting Complexes at Low Temperature , 1999 .

[44]  Tõnu Pullerits,et al.  Exciton Delocalization in the B850 Light-Harvesting Complex: Comparison of Different Measures , 2001 .

[45]  Zhenfeng Liu,et al.  Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution , 2004, Nature.

[46]  V. May,et al.  Simulations of frequency-domain spectra: structure-function relationships in photosynthetic pigment-protein complexes. , 2000, Physical review letters.

[47]  V. Sundström,et al.  Exciton Delocalization Length in the B850 Antenna of Rhodobacter sphaeroides , 1996 .

[48]  V. Novoderezhkin,et al.  Exciton states of the antenna and energy trapping by the reaction center , 1994, Photosynthesis Research.

[49]  Robert Eugene Blankenship,et al.  Ultrafast energy transfer in light-harvesting chlorosomes from the green sulfur bacterium Chlorobium tepidum. , 1995, Chemical physics.

[50]  Jan F. Schmidt,et al.  Spectroscopy of individual LH2 complexes of Rhodopseudomonas acidophila : localized excitations in the B800 band , 1999 .

[51]  James Barber,et al.  Architecture of the Photosynthetic Oxygen-Evolving Center , 2004, Science.

[52]  G. Small,et al.  Symmetry-Based Analysis of the Effects of Random Energy Disorder on the Excitonic Level Structure of Cyclic Arrays: Application to Photosynthetic Antenna Complexes , 1998 .

[53]  G. Wiederrecht,et al.  Femtosecond transient absorption spectroscopy on the light-harvesting Chl a/b protein complex of Photosystem II at room temperature and 12 K , 1995 .

[54]  N. Woodbury,et al.  Femtosecond pump-probe analysis of energy and electron transfer in photosynthetic membranes of Rhodobacter capsulatus. , 1994, Biochemistry.

[55]  V. Sundström,et al.  Femtosecond vibrational dynamics and relaxation in the core light-harvesting complex of photosynthetic purple bacteria , 1996 .

[56]  M. Wasielewski,et al.  Ultrafast excitation energy transfer and exciton-exciton annihilation processes in isolated light harvesting complexes of photosystem II (LHC II) from spinach , 1994 .

[57]  C. Gradinaru,et al.  Identifying the Pathways of Energy Transfer between Carotenoids and Chlorophylls in LHCII and CP29. A Multicolor, Femtosecond Pump-Probe Study , 2000 .

[58]  C. Gradinaru,et al.  Stark spectroscopy of the light-harvesting complex II in different oligomerisation states. , 2003, Biochimica et biophysica acta.

[59]  R. G. Alden,et al.  Ultrafast exciton relaxation in the B850 antenna complex of Rhodobacter sphaeroides. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[60]  P. Dutton,et al.  The First Events in Photosynthesis: Electronic Coupling and Energy Transfer Dynamics in the Photosynthetic Reaction Center from Rhodobacter sphaeroides , 1999 .

[61]  E. Peterman,et al.  The nature of the excited state of the reaction center of photosystem II of green plants: a high-resolution fluorescence spectroscopy study. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[62]  G. Renger,et al.  Density of Vibrational States of the Light-Harvesting Complex II of Green Plants Studied by Inelastic Neutron Scattering† , 2004 .

[63]  R. van Grondelle,et al.  Identification of the upper exciton component of the B850 bacteriochlorophylls of the LH2 antenna complex, using a B800-free mutant of Rhodobacter sphaeroides. , 1998, Biochemistry.

[64]  Alexander M. Sergeev,et al.  Femtosecond energy transfer within the LH2 peripheral antenna of the photosynthetic purple bacteria Rhodobacter sphaeroides and Rhodopseudomonas palustris LL , 1993 .

[65]  V. Shuvalov,et al.  BA and BB absorbance perturbations induced by coherent nuclear motions in reaction centers from Rhodobacter sphaeroides upon 30-femtosecond excitation of the primary donor , 1998 .

[66]  V. Shuvalov,et al.  Coherent nuclear and electronic dynamics in primary charge separation in photosynthetic reaction centers: A redfield theory approach , 2004 .

[67]  H. Sumi Theory on Rates of Excitation-Energy Transfer between Molecular Aggregates through Distributed Transition Dipoles with Application to the Antenna System in Bacterial Photosynthesis , 1999 .

[68]  Rienk van Grondelle,et al.  Absorption and CD spectroscopy and modeling of various LH2 complexes from purple bacteria. , 2002, Biophysical journal.

[69]  V. Shuvalov,et al.  Femtosecond kinetics of electron transfer in the bacteriochlorophyllM‐modified reaction centers from Rhodobacter sphaeroides (R‐26) , 1996, FEBS letters.

[70]  M. Mostovoy,et al.  Statistics of Optical Spectra from Single-Ring Aggregates and Its Application to LH2 , 2000 .

[71]  G. Small,et al.  B896 and B870 components of the Rhodobacter sphaeroides antenna: a hole burning study , 1992 .

[72]  D. Oesterhelt,et al.  Energy transfer in a single self‐aggregated photosynthetic unit , 2003, FEBS letters.

[73]  N. Scherer,et al.  Exciton Delocalization and Initial Dephasing Dynamics of Purple Bacterial LH2 , 2000 .

[74]  G. Fleming,et al.  COMPETITION BETWEEN ENERGY AND PHASE RELAXATION IN ELECTRONIC CURVE CROSSING PROCESSES , 1995 .

[75]  Graham R. Fleming,et al.  Dynamics in isolated bacterial light harvesting antenna (LH2) of Rhodobacter sphaeroides at room temperature , 1996 .

[76]  R. Grondelle,et al.  Exciton−Vibrational Relaxation and Transient Absorption Dynamics in LH1 of Rhodopseudomonas viridis: A Redfield Theory Approach , 2002 .

[77]  Jan F. Schmidt,et al.  Spectroscopy of Single Light-Harvesting Complexes from Purple Photosynthetic Bacteria at 1.2 K , 1998 .

[78]  R. Agarwal,et al.  Three Pulse Photon Echo Peak Shift Study of the B800 Band of the LH2 Complex of Rps. acidophila at Room Temperature: A Coupled Master Equation and Nonlinear Optical Response Function Approach , 2001 .

[79]  D. Klug,et al.  A quantitative structure–function relationship for the Photosystem II reaction center: Supermolecular behavior in natural photosynthesis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[80]  R. W. Visschers,et al.  INTER- AND INTRABAND ENERGY TRANSFER IN LH2-ANTENNA COMPLEXES OF PURPLE BACTERIA. A FLUORESCENCE LINE-NARROWING AND HOLE-BURNING STUDY , 1994 .

[81]  R. Monshouwer,et al.  Disordered exciton model for the core light-harvesting antenna of Rhodopseudomonas viridis. , 1999, Biophysical journal.

[82]  R. Monshouwer,et al.  Time-resolved absorption difference spectroscopy of the LH-1 antenna of Rhodopseudomonas viridis. , 1998 .

[83]  H. Paulsen,et al.  Exchange of pigment-binding amino acids in light-harvesting chlorophyll a/b protein. , 1999, Biochemistry.

[84]  J. Ihalainen,et al.  Superradiance and Exciton (De)localization in Light-Harvesting Complex II from Green Plants? † , 2002 .

[85]  R. Jankowiak,et al.  Comparison of the LH2 Antenna Complexes of Rhodopseudomonas acidophila (Strain 10050) and Rhodobacter sphaeroides by High-Pressure Absorption, High-Pressure Hole Burning, and Temperature-Dependent Absorption Spectroscopies , 1997 .

[86]  V. May,et al.  Ultrafast Exciton Motion in Photosynthetic Antenna Systems: The FMO-Complex , 1998 .

[87]  R. Grondelle,et al.  Energy Transfer in the B800 Rings of the Peripheral Bacterial Light-Harvesting Complexes of Rhodopseudomonas acidophila and Rhodospirillum molischianum Studied with Photon Echo Techniques. , 2000 .

[88]  J. Wrachtrup,et al.  Circular symmetry of the light-harvesting 1 complex from Rhodospirillum rubrum is not perturbed by interaction with the reaction center. , 2003, Biochemistry.

[89]  H. Scheer,et al.  Energy transfer in LH2 of Rhodospirillum Molischianum, studied by subpicosecond spectroscopy and configuration interaction exciton calculations. , 2001 .

[90]  C. Gradinaru,et al.  The flow of excitation energy in LHCII monomers: implications for the structural model of the major plant antenna. , 1998, Biophysical journal.

[91]  M. Jones,et al.  Coherent dynamics during the primary electron-transfer reaction in membrane-bound reaction centers of Rhodobacter sphaeroides. , 1994, Biochemistry.

[92]  C. Gradinaru,et al.  Energy transfer in LHCII monomers at 77K studied by sub-picosecond transient absorption spectroscopy. , 1997, Biochemistry.

[93]  Bruno Robert,et al.  Molecular basis of photoprotection and control of photosynthetic light-harvesting , 2005, Nature.

[94]  P. Horton,et al.  REGULATION OF LIGHT HARVESTING IN GREEN PLANTS. , 1996, Annual review of plant physiology and plant molecular biology.

[95]  J. Kennis,et al.  Femtosecond Dynamics in Isolated LH2 Complexes of Various Species of Purple Bacteria , 1997 .

[96]  G. Fleming,et al.  Three-Pulse Photon Echo Measurements on LH1 and LH2 Complexes of Rhodobacter sphaeroides: A Nonlinear Spectroscopic Probe of Energy Transfer , 1997 .

[97]  V. Sundström,et al.  Temperature Dependence of Excitation Transfer in LH2 of Rhodobacter sphaeroides , 1997 .

[98]  E. A. Wachter,et al.  Simultaneous Two‐Photon Activation of Type‐I Photodynamic Therapy Agents , 1997, Photochemistry and photobiology.

[99]  D. Cugini,et al.  Mutational analysis of a higher plant antenna protein provides identification of chromophores bound into multiple sites. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[100]  V. Novoderezhkin,et al.  Excitonic interactions in the light‐harvesting antenna of photosynthetic purple bacteria and their influence on picosecond absorbance difference spectra , 1993, FEBS letters.

[101]  G. Fleming,et al.  Electronic Excitation Transfer in the LH2 Complex of Rhodobacter sphaeroides , 1996 .

[102]  M. Rätsep,et al.  Resonant emission from the B870 exciton state and electron–phonon coupling in the LH2 antenna chromoprotein , 2003 .

[103]  R. G. Alden,et al.  Calculations of Spectroscopic Properties of the LH2 Bacteriochlorophyll−Protein Antenna Complex from Rhodopseudomonas acidophila† , 1997 .

[104]  Seogjoo J. Jang,et al.  Multichromophoric Förster resonance energy transfer. , 2004, Physical review letters.

[105]  J. Gong,et al.  Investigation of Molecular Diffusion in Hydrogel by Electronic Speckle Pattern Interferometry , 1999 .

[106]  S. Savikhin,et al.  Temperature dependence of electronic energy transfers within B850 antennae of the NF57 mutant of the purple bacterium Rhodobacter sphaeroides , 1996 .

[107]  J. Voigt,et al.  Chlorophyll a Franck-Condon factors and excitation energy transfer , 1999 .

[108]  W. Kühlbrandt,et al.  Mutant trimers of light-harvesting complex II exhibit altered pigment content and spectroscopic features. , 1999, Biochemistry.

[109]  W. Saenger,et al.  Theory of optical spectra of photosystem II reaction centers: location of the triplet state and the identity of the primary electron donor. , 2005, Biophysical journal.

[110]  Klaus Schulten,et al.  Excitons in a photosynthetic light-harvesting system: a combined molecular dynamics, quantum chemistry, and polaron model study. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[111]  R. Cogdell,et al.  Characterization of the light harvesting antennas of photosynthetic purple bacteria by Stark spectroscopy: 2. LH2 complexes: Influence of the protein environment. , 1997 .

[112]  S. Mukamel,et al.  Exciton-migration and three-pulse femtosecond optical spectroscopies of photosynthetic antenna complexes , 1998 .

[113]  R. W. Visschers,et al.  Spectroscopic properties of the light-harvesting complexes from Rhodospirillum molischianum. , 1995, Biochimica et biophysica acta.

[114]  V. May,et al.  Theory of Multiple Exciton Effects in the Photosynthetic Antenna Complex LHC-II , 1997 .

[115]  Tomas Gillbro,et al.  Energy Transfer and Exciton Annihilation in the B800−850 Antenna Complex of the Photosynthetic Purple Bacterium Rhodopseudomonas acidophila (Strain 10050). A Femtosecond Transient Absorption Study , 1997 .

[116]  R. Grondelle,et al.  Energy-transfer dynamics in the LHCII complex of higher plants: Modified redfield approach , 2004 .

[117]  G. Fleming,et al.  Excitation Transfer in the Core Light-Harvesting Complex (LH-1) of Rhodobacter sphaeroides: An Ultrafast Fluorescence Depolarization and Annihilation Study , 1995 .

[118]  V. Sundström,et al.  Fluorescence depolarization dynamics in the B850 complex of purple bacteria , 2002 .

[119]  R. Cogdell,et al.  NONPHOTOCHEMICAL HOLE BURNING OF THE B800‐B850 ANTENNA COMPLEX OF Rhodopseudomonas acidophila , 1993 .

[120]  G. Fleming,et al.  Femtosecond spectroscopy of photosynthetic light-harvesting systems. , 1997, Current opinion in structural biology.

[121]  H. Fidder,et al.  Coherent nuclear motions in light‐harvesting pigments and dye molecules, probed by ultrafast spectroscopy , 1995 .

[122]  Sergio Marco,et al.  Nanodissection and high-resolution imaging of the Rhodopseudomonas viridis photosynthetic core complex in native membranes by AFM , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[123]  J. Kennis,et al.  Energy Transfer and Exciton Coupling in Isolated B800−850 Complexes of the Photosynthetic Purple Sulfur Bacterium Chromatium tepidum. The Effect of Structural Symmetry on Bacteriochlorophyll Excited States , 1996 .

[124]  Petra Fromme,et al.  Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution , 2001, Nature.

[125]  V. Sundström,et al.  Excitons in Photosynthetic Purple Bacteria: Wavelike Motion or Incoherent Hopping? , 1997 .

[126]  R. Monshouwer,et al.  Electronic and Vibrational Coherence in the Core Light-Harvesting Antenna of Rhodopseudomonas viridis , 2000 .

[127]  Leonas Valkunas,et al.  Carotenoid Cation Formation and the Regulation of Photosynthetic Light Harvesting , 2005, Science.

[128]  Graham R. Fleming,et al.  Ultrafast Energy Transfer in LHC-II Revealed by Three-Pulse Photon Echo Peak Shift Measurements , 2000 .

[129]  D. Klug,et al.  Exciton equilibration induced by phonons: theory and application to PS II reaction centers. , 1997 .

[130]  Michael R. Wasielewski,et al.  Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis , 1994, Photosynthesis Research.

[131]  T. Dracheva,et al.  Excition theory of spectra and energy transfer in photosynthesis: spectral hole burning in the antenna of purple bacteria , 1995 .

[132]  Leonas Valkunas,et al.  NONLINEAR ANNIHILATION OF EXCITONS.: THEORY , 2000 .

[133]  A. V. van Oijen,et al.  Spectroscopy on the B850 band of individual light-harvesting 2 complexes of Rhodopseudomonas acidophila. I. Experiments and Monte Carlo simulations. , 2001, Biophysical journal.

[134]  G. Fleming,et al.  Energy transfer in photosystem I of cyanobacteria Synechococcus elongatus: model study with structure-based semi-empirical Hamiltonian and experimental spectral density. , 2003, Biophysical journal.

[135]  W. Kühlbrandt,et al.  Assignment of spectral substructures to pigment-binding sites in higher plant light-harvesting complex LHC-II. , 2002, Biochemistry.

[136]  V. Sundström,et al.  Energy transfer in spectrally inhomogeneous light-harvesting pigment-protein complexes of purple bacteria. , 1995, Biophysical journal.

[137]  Nobuo Kamiya,et al.  Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-Å resolution , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[138]  V. May,et al.  Influence of Higher Excited Singlet States on Ultrafast Exciton Motion in Pigment‐Protein Complexes , 1997 .

[139]  E. Peterman,et al.  Electron-Phonon Coupling and Vibronic Fine Structure of Light-Harvesting Complex II of Green Plants: Temperature Dependent Absorption and High-Resolution Fluorescence Spectroscopy , 1997 .

[140]  I. Gould,et al.  Ab Initio Molecular Orbital Calculations of Electronic Couplings in the LH2 Bacterial Light-Harvesting Complex of Rps. Acidophila , 1999 .

[141]  R. Silbey,et al.  Current status of single-molecule spectroscopy: Theoretical aspects , 2002 .

[142]  Yoshinori Fujiyoshi,et al.  Atomic model of plant light-harvesting complex by electron crystallography , 1994, Nature.

[143]  R. van Grondelle,et al.  Pathways and timescales of primary charge separation in the photosystem II reaction center as revealed by a simultaneous fit of time-resolved fluorescence and transient absorption. , 2005, Biophysical journal.

[144]  M. A. Bopp,et al.  The dynamics of structural deformations of immobilized single light-harvesting complexes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[145]  R. Grondelle,et al.  Intra- and interband transfers in the B800-B850 antenna of Rhodospirillum molischianum Redfield theory modeling of polarized pump-probe kinetics , 2003 .

[146]  Klaus Schulten,et al.  Photosynthetic apparatus of purple bacteria , 2002, Quarterly Reviews of Biophysics.

[147]  Graham R. Fleming,et al.  On the Mechanism of Light Harvesting in Photosynthetic Purple Bacteria: B800 to B850 Energy Transfer , 2000 .

[148]  Robert Eugene Blankenship,et al.  Femtosecond Spectroscopy of Chlorosome Antennas from the Green Photosynthetic Bacterium Chloroflexus aurantiacus , 1994 .

[149]  J. Jean Time‐ and frequency‐resolved spontaneous emission as a probe of coherence effects in ultrafast electron transfer reactions , 1994 .

[150]  B. M. van Bolhuis,et al.  Polarized fluorescence and absorption of macroscopically aligned Light Harvesting Complex II. , 1994, Biophysical journal.

[151]  P. Bullough,et al.  The 8.5 A projection map of the light‐harvesting complex I from Rhodospirillum rubrum reveals a ring composed of 16 subunits. , 1995, The EMBO journal.

[152]  N. Isaacs,et al.  Crystal Structure of the RC-LH1 Core Complex from Rhodopseudomonas palustris , 2003, Science.

[153]  B. Matthews,et al.  Chlorophyll arrangement in a bacteriochlorophyll protein from Chlorobium limicola , 1975, Nature.

[154]  R. van Grondelle,et al.  Dynamics of excitation energy transfer in the LH1 and LH2 light-harvesting complexes of photosynthetic bacteria. , 2001, Biochemistry.

[155]  S. Mukamel,et al.  Exciton Hamiltonian for the Bacteriochlorophyll System in the LH2 Antenna Complex of Purple Bacteria , 2000 .

[156]  R. Friesner,et al.  Application of a multilevel Redfield theory to electron transfer in condensed phases , 1992 .

[157]  H. Michel,et al.  Low-intensity pump-probe measurements on the B800 band of Rhodospirillum molischianum. , 2003, Biophysical journal.

[158]  R. Jankowiak,et al.  On B800→B800 energy transfer in the LH2 complex of purple bacteria , 2002 .

[159]  M R Jones,et al.  Coherent nuclear dynamics at room temperature in bacterial reaction centers. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[160]  A. G. Redfield,et al.  The Theory of Relaxation Processes , 1965 .

[161]  O. Somsen,et al.  Direct observation of sub-picosecond equilibration of excitation energy in the light-harvesting antenna of Rhodospirillum rubrum. , 1995, Biophysical journal.

[162]  R. W. Visschers,et al.  Ultrafast dynamics within the B820 subunit from the core (LH-1) antenna complex of Rs. rubrum , 1996 .

[163]  S. Mukamel,et al.  Simulation of three–pulse–echo and fluorescence depolarization in photosynthetic aggregates , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[164]  A. Oijen,et al.  Unraveling the electronic structure of individual photosynthetic pigment-protein complexes , 1999, Science.

[165]  V. Sundström,et al.  Energy transfer and trapping in photosynthesis , 1994 .

[166]  T. Gillbro,et al.  FEMTOSECOND ENERGY-TRANSFER DYNAMICS BETWEEN BACTERIOCHLOROPHYLLS IN THE B800-820 ANTENNA COMPLEX OF THE PHOTOSYNTHETIC PURPLE BACTERIUM RHODOPSEUDOMO NAS ACIDOPHILA (STRAIN 7750) , 1998 .

[167]  J. P. Connelly,et al.  Ultrafast Spectroscopy of Trimeric Light-Harvesting Complex II from Higher Plants , 1997 .

[168]  V. Sundström,et al.  Exciton Relaxation and Polaron Formation in LH2 at Low Temperature , 2000 .

[169]  G. Small,et al.  Direct Observation and Hole Burning of the Lowest Exciton Level (B870) of the LH2 Antenna Complex of Rhodopseudomonas acidophila (Strain 10050) , 1997 .

[170]  V. Sundström,et al.  Vibrational dynamics in the light-harvesting complexes of the photosynthetic bacterium Rhodobacter sphaeroides , 1994 .

[171]  J. Amesz,et al.  EXCITED STATE DYNAMICS IN FMO ANTENNA COMPLEXES FROM PHOTOSYNTHETIC GREEN SULFUR BACTERIA : A KINETIC MODEL , 1999 .

[172]  A. Holzwarth,et al.  Primary Processes and Structure of the Photosystem II Reaction Center: A Photon Echo Study†,‡ , 2000 .

[173]  M. Seibert,et al.  Energy transfer dynamics of the B800—B850 antenna complex of Rhodobacter sphaeroides: a hole burning study , 1991 .

[174]  V. Novoderezhkin,et al.  Excitation delocalization over the whole core antenna of photosynthetic purple bacteria evidenced by non‐linear pump‐probe spectroscopy , 1995, FEBS letters.

[175]  A. V. van Oijen,et al.  Spectroscopy on the B850 band of individual light-harvesting 2 complexes of Rhodopseudomonas acidophila. II. Exciton states of an elliptically deformed ring aggregate. , 2001, Biophysical journal.

[176]  M. H. Vos,et al.  Electronic Energy Transfer within the Hexamer Cofactor System of Bacterial Reaction Centers , 1997 .

[177]  J. Kennis,et al.  ENERGY RELAXATION WITHIN THE B850 ABSORPTION BAND OF THE ISOLATED LIGHT-HARVESTING COMPLEX LH2 FROM RHODOPSEUDOMONAS ACIDOPHILA AT LOW TEMPERATURE , 1999 .