Observers for Kinematic Systems with Symmetry

Abstract This paper considers the design of nonlinear state observers for finite-dimensional equivariant kinematics of mechanical systems. The observer design problem is approached by lifting the system kinematics onto the symmetry group and designing an observer for the lifted system. Two particular classes of lifted systems are identified, which we term type I and type II systems, that correspond to common configurations of sensor suites for mobile robotics applications. We consider type I systems in detail and define an error signal on the symmetry group using the group structure. We propose an observer structure with a pre-observer or internal model augmented by an equivariant innovation term that leads to autonomous error evolution. A control Lyapunov function construction is used to design the observer innovation that both ensures the required equivariance, and leads to strong convergence properties of the observer error dynamics.

[1]  Bijoy K. Ghosh,et al.  Pose estimation using line-based dynamic vision and inertial sensors , 2003, IEEE Trans. Autom. Control..

[2]  Philippe Martin,et al.  Non-Linear Symmetry-Preserving Observers on Lie Groups , 2007, IEEE Transactions on Automatic Control.

[3]  Daizhan Cheng,et al.  Observability of systems on lie groups and coset spaces , 1990 .

[4]  Robert M. Sanner,et al.  A coupled nonlinear spacecraft attitude controller and observer with an unknown constant gyro bias and gyro noise , 2003, IEEE Trans. Autom. Control..

[5]  A. Isidori Nonlinear Control Systems , 1985 .

[6]  Philippe Martin,et al.  Symmetry-Preserving Observers , 2006, IEEE Transactions on Automatic Control.

[7]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[8]  George E. P. Box,et al.  The Royal Society of London , 2013 .

[9]  Rita Cunha,et al.  A Nonlinear Attitude Observer Based on Active Vision and Inertial Measurements , 2011, IEEE Transactions on Robotics.

[10]  Tarek Hamel,et al.  Attitude and gyro bias estimation for a VTOL UAV , 2006 .

[11]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[12]  Antonio Loría,et al.  Uniform exponential stability of linear time-varying systems: revisited , 2002, Syst. Control. Lett..

[13]  W. Boothby An introduction to differentiable manifolds and Riemannian geometry , 1975 .

[14]  A. D. Lewis,et al.  Geometric Control of Mechanical Systems , 2004, IEEE Transactions on Automatic Control.

[15]  Tor Arne Johansen,et al.  Attitude Estimation Using Biased Gyro and Vector Measurements With Time-Varying Reference Vectors , 2012, IEEE Transactions on Automatic Control.

[16]  R. Mortensen Maximum-likelihood recursive nonlinear filtering , 1968 .

[17]  Louis L. Whitcomb,et al.  Adaptive Identification on the Group of Rigid-Body Rotations and its Application to Underwater Vehicle Navigation , 2005, IEEE Transactions on Robotics.

[18]  D. Kazakos,et al.  On local observability for invariant systems on Lie groups and coset spaces , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[19]  R. Brockett Lie Theory and Control Systems Defined on Spheres , 1973 .

[20]  F. Markley,et al.  Nonlinear Attitude Filtering Methods , 2005 .

[21]  Robert E. Mahony,et al.  Gradient-Like Observers for Invariant Dynamics on a Lie Group , 2008, IEEE Transactions on Automatic Control.

[22]  Rita Cunha,et al.  A nonlinear position and attitude observer on SE(3) using landmark measurements , 2010, Syst. Control. Lett..

[23]  V. Jurdjevic Geometric control theory , 1996 .

[24]  T. Hamel,et al.  Complementary filter design on the special orthogonal group SO(3) , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[25]  Robert E. Mahony,et al.  Bias estimation for invariant systems on Lie groups with homogeneous outputs , 2013, 52nd IEEE Conference on Decision and Control.

[26]  Pierre Rouchon,et al.  An intrinsic observer for a class of Lagrangian systems , 2003, IEEE Trans. Autom. Control..

[27]  John L. Crassidis,et al.  Survey of nonlinear attitude estimation methods , 2007 .

[28]  P. Rouchon,et al.  A non-linear symmetry-preserving observer for velocity-aided inertial navigation , 2006, 2006 American Control Conference.

[29]  J. Vasconcelos,et al.  A Nonlinear Observer for Rigid Body Attitude Estimation using Vector Observations , 2008 .

[30]  Thor I. Fossen,et al.  A nonlinear observer for GPS and INS integration , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[31]  S. Salcudean A globally convergent angular velocity observer for rigid body motion , 1991 .

[32]  Philippe Martin,et al.  Design and implementation of a low-cost observer-based attitude and heading reference system , 2010 .

[33]  Robert E. Mahony,et al.  Analysis of Non-Linear Attitude Observers for Time-Varying Reference Measurements , 2012, IEEE Transactions on Automatic Control.

[34]  Domenico Campolo,et al.  Inertial/Magnetic Sensors Based Orientation Tracking on the Group of Rigid Body Rotations with Application to Wearable Devices , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[35]  H. Sussmann,et al.  Control systems on Lie groups , 1972 .

[36]  D. H. S. Maithripala,et al.  Almost-global tracking of simple mechanical systems on a general class of Lie Groups , 2005, IEEE Transactions on Automatic Control.

[37]  A. Agrachev,et al.  Control Theory from the Geometric Viewpoint , 2004 .

[38]  H. Nijmeijer,et al.  New directions in nonlinear observer design , 1999 .

[39]  Robert E. Mahony,et al.  Nonlinear Complementary Filters on the Special Orthogonal Group , 2008, IEEE Transactions on Automatic Control.

[40]  Robert E. Mahony,et al.  Optimization Algorithms on Matrix Manifolds , 2007 .

[41]  P. Olver Nonlinear Systems , 2013 .

[42]  K. Narendra,et al.  On the Stability of Nonautonomous Differential Equations $\dot x = [A + B(t)]x$, with Skew Symmetric Matrix $B(t)$ , 1977 .

[43]  K. Narendra,et al.  On the uniform asymptotic stability of certain linear nonautonomous differential equations , 1976 .

[44]  Philippe Martin,et al.  Invariant observers for attitude and heading estimation from low-cost inertial and magnetic sensors , 2007, 2007 46th IEEE Conference on Decision and Control.

[45]  Nando de Freitas,et al.  An Introduction to Sequential Monte Carlo Methods , 2001, Sequential Monte Carlo Methods in Practice.

[46]  A. Bloch,et al.  Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.

[47]  Anthony M. Bloch,et al.  Nonlinear Dynamical Control Systems (H. Nijmeijer and A. J. van der Schaft) , 1991, SIAM Review.

[48]  R. Brockett System Theory on Group Manifolds and Coset Spaces , 1972 .

[49]  Robert E. Mahony,et al.  Observers for systems with invariant outputs , 2009, 2009 European Control Conference (ECC).

[50]  M. Moallem,et al.  Attitude estimation and stabilization of a rigid body using low-cost sensors , 2007, 2007 46th IEEE Conference on Decision and Control.

[51]  Amit K. Sanyal,et al.  Attitude State Estimation with Multirate Measurements for Almost Global Attitude Feedback Tracking , 2012 .

[52]  Robert E. Mahony,et al.  Minimum-Energy Filtering for Attitude Estimation , 2013, IEEE Transactions on Automatic Control.

[53]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[54]  Robert E. Mahony,et al.  A nonlinear observer for 6 DOF pose estimation from inertial and bearing measurements , 2009, 2009 IEEE International Conference on Robotics and Automation.