The superconducting diode effect

[1]  K. T. Law,et al.  Symmetry-broken Josephson junctions and superconducting diodes in magic-angle twisted bilayer graphene , 2023, Nature communications.

[2]  G. Nishijima,et al.  Nonreciprocal critical current in an obliquely ion-irradiated YBa2Cu3O7 film , 2023, Applied Physics Letters.

[3]  A. Vasenko,et al.  Superconducting Diode Effect in Topological Hybrid Structures , 2023, Condensed Matter.

[4]  Y. Anahory,et al.  Direct observation of a superconducting vortex diode , 2023, Nature Communications.

[5]  C. Winkelmann,et al.  Diode effect in Josephson junctions with a single magnetic atom , 2022, Nature.

[6]  F. Giazotto,et al.  A gate- and flux-controlled supercurrent diode effect , 2022, Applied Physics Letters.

[7]  Wei Han,et al.  Superconductor/Ferromagnet Heterostructures: A Platform for Superconducting Spintronics and Quantum Computation , 2022, Advanced Quantum Technologies.

[8]  Y. Tokura,et al.  Nonreciprocal charge transport in topological superconductor candidate Bi2Te3/PdTe2 heterostructure , 2022, npj Quantum Materials.

[9]  Xiaoping Zhou,et al.  Nonreciprocal charge transport in topological kagome superconductor CsV3Sb5 , 2022, npj Quantum Materials.

[10]  T. Ono,et al.  Magnetic-field-induced polarity oscillation of superconducting diode effect , 2022, Applied Physics Express.

[11]  J. Santamaria Superconducting diodes with no magnetic field , 2022, Nature Materials.

[12]  Jiangping Hu,et al.  Superconducting diode effects , 2022, Nature Physics.

[13]  S. Heun,et al.  Josephson Diode Effect in High-Mobility InSb Nanoflags , 2022, Nano letters.

[14]  Y. Lyanda-Geller,et al.  Diamagnetic mechanism of critical current non-reciprocity in multilayered superconductors , 2022, Nature Communications.

[15]  K. Jeon,et al.  Zero-field polarity-reversible Josephson supercurrent diodes enabled by a proximity-magnetized Pt barrier , 2022, Nature Materials.

[16]  C. Palmstrøm,et al.  Gate-tunable superconducting diode effect in a three-terminal Josephson device , 2022, Nature communications.

[17]  Xiaolin Wang,et al.  Majorana zero modes in iron-based superconductors , 2022, Matter.

[18]  Y. Shimakawa,et al.  Field-free superconducting diode effect in noncentrosymmetric superconductor/ferromagnet multilayers , 2022, Nature Nanotechnology.

[19]  V. Krasnov,et al.  Demonstration of a superconducting diode-with-memory, operational at zero magnetic field with switchable nonreciprocity , 2022, Nature Communications.

[20]  Xianhui Chen,et al.  Superior carrier tuning in ultrathin superconducting materials by electric-field gating , 2022, Nature Reviews Physics.

[21]  H. Namiki,et al.  Giant second harmonic transport under time-reversal symmetry in a trigonal superconductor , 2022, Nature Communications.

[22]  M. Davydova,et al.  Universal Josephson diode effect , 2022, Science advances.

[23]  Xiaodong Xu,et al.  Crossover from Ising- to Rashba-type superconductivity in epitaxial Bi2Se3/monolayer NbSe2 heterostructures , 2021, Nature Materials.

[24]  Yang Zhang,et al.  Josephson diode effect from Cooper pair momentum in a topological semimetal , 2021, Nature Physics.

[25]  H. Scammell,et al.  Theory of zero-field superconducting diode effect in twisted trilayer graphene , 2021, 2D Materials.

[26]  J. Hone,et al.  Zero-field superconducting diode effect in small-twist-angle trilayer graphene , 2021, Nature Physics.

[27]  S. Valencia,et al.  Extremely long-range, high-temperature Josephson coupling across a half-metallic ferromagnet , 2021, Nature Materials.

[28]  I. Žutić,et al.  Evidence for anisotropic spin-triplet Andreev reflection at the 2D van der Waals ferromagnet/superconductor interface , 2021, Nature Communications.

[29]  Kenji Watanabe,et al.  Supercurrent diode effect and magnetochiral anisotropy in few-layer NbSe2 , 2021, Nature Communications.

[30]  J. Moodera,et al.  Rectification in a Eu-chalcogenide-based superconducting diode , 2021, 2109.01061.

[31]  M. Fuhrer,et al.  Optimizing topological switching in confined 2D-Xene nanoribbons via finite-size effects , 2021, Applied Physics Reviews.

[32]  Yukio Tanaka,et al.  A phenomenological theory of superconductor diodes , 2021, New Journal of Physics.

[33]  L. Fu,et al.  Supercurrent diode effect and finite-momentum superconductors , 2021, Proceedings of the National Academy of Sciences of the United States of America.

[34]  W. Kwok,et al.  Superconducting diode effect via conformal-mapped nanoholes , 2021, Nature Communications.

[35]  Yujia Zeng,et al.  The field-free Josephson diode in a van der Waals heterostructure , 2021, Nature.

[36]  M. Manfra,et al.  Supercurrent rectification and magnetochiral effects in symmetric Josephson junctions , 2021, Nature Nanotechnology.

[37]  Y. Iwasa,et al.  Symmetry Breaking and Nonlinear Electric Transport in van der Waals Nanostructures , 2021 .

[38]  M. Fuhrer,et al.  Overcoming Boltzmann's Tyranny in a Transistor via the Topological Quantum Field Effect. , 2020, Nano letters.

[39]  T. Ihn,et al.  Gate-defined Josephson junctions in magic-angle twisted bilayer graphene , 2020, Nature Nanotechnology.

[40]  J. Jia,et al.  Discovery of segmented Fermi surface induced by Cooper pair momentum , 2020, Science.

[41]  M. Fuhrer,et al.  Quantum Anomalous Hall Effect in Magnetic Doped Topological Insulators and Ferromagnetic Spin-Gapless Semiconductors-A Perspective Review. , 2020, Small.

[42]  N. Yuan,et al.  Topological metals and finite-momentum superconductors , 2020, Proceedings of the National Academy of Sciences.

[43]  Y. Iwasa,et al.  One-way supercurrent achieved in an electrically polar film , 2020, Nature.

[44]  T. Ono,et al.  Observation of superconducting diode effect , 2020, Nature.

[45]  Xiaolin Wang,et al.  Spin-Gapless Semiconductors. , 2020, Small.

[46]  Y. Iwasa,et al.  Nonreciprocal transport in gate-induced polar superconductor SrTiO3 , 2020, Science Advances.

[47]  J. Moodera,et al.  Large Enhancement of Critical Current in Superconducting Devices by Gate Voltage. , 2020, Nano letters.

[48]  O. Durante,et al.  A Josephson phase battery , 2020, Nature Nanotechnology.

[49]  Timur K. Kim,et al.  Fermi-crossing Type-II Dirac fermions and topological surface states in NiTe2 , 2019, Scientific Reports.

[50]  Hyun-Woo Lee,et al.  Gate-tunable giant nonreciprocal charge transport in noncentrosymmetric oxide interfaces , 2019, Nature Communications.

[51]  M. Hersam,et al.  2D materials for quantum information science , 2019, Nature Reviews Materials.

[52]  J. Shabani,et al.  Gate controlled anomalous phase shift in Al/InAs Josephson junctions , 2019, Nature Communications.

[53]  Chao Zhang,et al.  Superconducting pair-breaking under intense sub-gap terahertz radiation , 2019, Applied Physics Letters.

[54]  Y. Tokura,et al.  Nonreciprocal charge transport at topological insulator/superconductor interface , 2019, Nature Communications.

[55]  Yoshinori Tokura,et al.  Magnetic topological insulators , 2019, Nature Reviews Physics.

[56]  Yong P. Chen,et al.  Highly skewed current–phase relation in superconductor–topological insulator–superconductor Josephson junctions , 2018, npj Quantum Materials.

[57]  Alex I. Braginski,et al.  Superconductor Electronics: Status and Outlook , 2018, Journal of Superconductivity and Novel Magnetism.

[58]  S. Pal,et al.  Quantized Josephson phase battery , 2018, EPL (Europhysics Letters).

[59]  M. Fuhrer,et al.  Long range intrinsic ferromagnetism in two dimensional materials and dissipationless future technologies , 2018, Applied Physics Reviews.

[60]  Y. Tokura,et al.  Nonreciprocal responses from non-centrosymmetric quantum materials , 2018, Nature Communications.

[61]  L. Molenkamp,et al.  Topological superconductivity in a phase-controlled Josephson junction , 2018, Nature.

[62]  Y. Tokura,et al.  Current-induced dynamics of skyrmion strings , 2018, Science Advances.

[63]  P. Atkinson,et al.  Spin-Orbit induced phase-shift in Bi2Se3 Josephson junctions , 2018, Nature Communications.

[64]  M. Blamire,et al.  Enhanced spin pumping into superconductors provides evidence for superconducting pure spin currents , 2018, Nature Materials.

[65]  Moon Jip Park,et al.  Finite momentum Cooper pairing in three-dimensional topological insulator Josephson junctions , 2018, Nature Communications.

[66]  K. T. Law,et al.  Transport evidence of asymmetric spin–orbit coupling in few-layer superconducting 1Td-MoTe2 , 2018, Nature Communications.

[67]  Xiaodong Xu,et al.  Tuning Ising superconductivity with layer and spin–orbit coupling in two-dimensional transition-metal dichalcogenides , 2017, Nature Communications.

[68]  Q. Xue,et al.  Ising Superconductivity and Quantum Phase Transition in Macro-Size Monolayer NbSe2. , 2017, Nano letters.

[69]  T. Morimoto,et al.  Concept of Quantum Geometry in Optoelectronic Processes in Solids: Application to Solar Cells , 2017, Advanced materials.

[70]  T. Morimoto,et al.  Nonreciprocal current from electron interactions in noncentrosymmetric crystals: roles of time reversal symmetry and dissipation , 2017, Scientific Reports.

[71]  N. Nagaosa,et al.  Nonreciprocal charge transport in noncentrosymmetric superconductors , 2017, Science Advances.

[72]  Y. Tokura,et al.  Bulk rectification effect in a polar semiconductor , 2017, Nature Physics.

[73]  R. Tenne,et al.  Superconductivity in a chiral nanotube , 2017, Nature Communications.

[74]  G. Wendin Quantum information processing with superconducting circuits: a review , 2016, Reports on progress in physics. Physical Society.

[75]  Xiaolin Wang Dirac spin-gapless semiconductors: promising platforms for massless and dissipationless spintronics and new (quantum) anomalous spin Hall effects , 2016, 1607.06057.

[76]  E. Bakkers,et al.  Josephson ϕ0-junction in nanowire quantum dots , 2015, Nature Physics.

[77]  K. T. Law,et al.  Ising pairing in superconducting NbSe2 atomic layers , 2015, Nature Physics.

[78]  Xi Dai,et al.  Type-II Weyl semimetals , 2015, Nature.

[79]  Jacob Linder,et al.  Superconducting spintronics , 2015, Nature Physics.

[80]  Su-Yang Xu,et al.  Momentum-space imaging of Cooper pairing in a half-Dirac-gas topological superconductor , 2014, Nature Physics.

[81]  M. Blamire,et al.  Reversible control of spin-polarized supercurrents in ferromagnetic Josephson junctions , 2014, Nature Communications.

[82]  P. Lucignano,et al.  Spin–orbit coupling and anomalous Josephson effect in nanowires , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[83]  N. Avarvari,et al.  Electrical magnetochiral anisotropy in a bulk chiral molecular conductor , 2014, Nature Communications.

[84]  M. Silaev,et al.  The diode effect induced by domain-wall superconductivity , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[85]  Q. Xue,et al.  The Coexistence of Superconductivity and Topological Order in the Bi2Se3 Thin Films , 2011, Science.

[86]  N. Flytzanis,et al.  Zero phase difference supercurrent in ferromagnetic Josephson junctions , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[87]  V. Moshchalkov,et al.  Reverse-domain superconductivity in superconductor-ferromagnet hybrids: effect of a vortex-free channel on the symmetry of I-V characteristics , 2010, 1007.2527.

[88]  M. G. Blamire,et al.  Controlled Injection of Spin-Triplet Supercurrents into a Strong Ferromagnet , 2010, Science.

[89]  G. Carapella,et al.  Bistable Abrikosov vortex diode made of a Py–Nb ferromagnet-superconductor bilayer structure , 2009 .

[90]  Xi Dai,et al.  Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface , 2009 .

[91]  R. Cava,et al.  Observation of a large-gap topological-insulator class with a single Dirac cone on the surface , 2009 .

[92]  V. Moshchalkov,et al.  Planar superconductor/ferromagnet hybrids: Anisotropy of resistivity induced by magnetic templates , 2009, 0905.2590.

[93]  D. Xing,et al.  Origin of the spin-triplet Andreev reflection at ferromagnet/s-wave superconductor interface , 2008 .

[94]  T. Klapwijk,et al.  A spin triplet supercurrent through the half-metallic ferromagnet CrO2 , 2006, Nature.

[95]  Franco Nori,et al.  A Superconducting Reversible Rectifier That Controls the Motion of Magnetic Flux Quanta , 2003, Science.

[96]  S. Roth,et al.  Magneto-chiral anisotropy in charge transport through single-walled carbon nanotubes , 2002 .

[97]  D. Côté,et al.  Rectification and shift currents in GaAs , 2002 .

[98]  H. Takagi,et al.  Fermi Surface Sheet-Dependent Superconductivity in 2H-NbSe2 , 2001, Science.

[99]  D. Dew-Hughes,et al.  The critical current of superconductors: an historical review , 2001 .

[100]  V. M. Edelstein The Ginzburg - Landau equation for superconductors of polar symmetry , 1996 .

[101]  William Shockley,et al.  The theory of p-n junctions in semiconductors and p-n junction transistors , 1949, Bell Syst. Tech. J..

[102]  T. Ono,et al.  Observation of nonreciprocal superconducting critical field , 2021 .

[103]  Chao Zhang,et al.  Zero-gap materials for future spintronics, electronics and optics , 2010 .

[104]  J. H. Scaff,et al.  Development of silicon crystal rectifiers for microwave radar receivers , 1947 .