Efficient and Simple Algorithms for Fault-Tolerant Spanners

It was recently shown that a version of the greedy algorithm gives a construction of fault-tolerant spanners that is size-optimal, at least for vertex faults. However, the algorithm to construct this spanner is not polynomial-time, and the best-known polynomial time algorithm is significantly suboptimal. Designing a polynomial-time algorithm to construct (near-)optimal fault-tolerant spanners was given as an explicit open problem in the two most recent papers on fault-tolerant spanners ([Bodwin, Dinitz, Parter, Vassilevka Williams SODA '18] and [Bodwin, Patel PODC '19]). We give a surprisingly simple algorithm which runs in polynomial time and constructs fault-tolerant spanners that are extremely close to optimal (off by only a linear factor in the stretch) by modifying the greedy algorithm to run in polynomial time. To complement this result, we also give simple distributed constructions in both the LOCAL and CONGEST models.

[1]  David R. Karger,et al.  Randomized Approximation Schemes for Cuts and Flows in Capacitated Graphs , 2002, SIAM J. Comput..

[2]  Gary L. Miller,et al.  Improved Parallel Algorithms for Spanners and Hopsets , 2015, SPAA.

[3]  Kyomin Jung,et al.  Transitive-Closure Spanners , 2008, SIAM J. Comput..

[4]  Artur Czumaj,et al.  Fault-Tolerant Geometric Spanners , 2003, SCG '03.

[5]  Gary L. Miller,et al.  Parallel graph decompositions using random shifts , 2013, SPAA.

[6]  Giri Narasimhan,et al.  Efficient algorithms for constructing fault-tolerant geometric spanners , 1998, STOC '98.

[7]  David Peleg,et al.  Distributed Computing: A Locality-Sensitive Approach , 1987 .

[8]  Michael Dinitz,et al.  Optimal Vertex Fault Tolerant Spanners (for fixed stretch) , 2017, SODA.

[9]  Béla Bollobás,et al.  Extremal problems in graph theory , 1977, J. Graph Theory.

[10]  Yair Bartal,et al.  Probabilistic approximation of metric spaces and its algorithmic applications , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[11]  Tamás Lukovszki,et al.  New Results of Fault Tolerant Geometric Spanners , 1999, WADS.

[12]  Giri Narasimhan,et al.  Geometric spanner networks , 2007 .

[13]  N Linial,et al.  Low diameter graph decompositions , 1993, Comb..

[14]  Jose Augusto Ramos Soares,et al.  Graph Spanners: a Survey , 1992 .

[15]  DobkinDavid,et al.  On sparse spanners of weighted graphs , 1993 .

[16]  Sandeep Sen,et al.  A simple and linear time randomized algorithm for computing sparse spanners in weighted graphs , 2007, Random Struct. Algorithms.

[17]  Nikhil Srivastava,et al.  Twice-ramanujan sparsifiers , 2008, STOC '09.

[18]  Michael Langberg,et al.  Fault-tolerant spanners for general graphs , 2009, STOC '09.

[19]  David Peleg,et al.  An optimal synchronizer for the hypercube , 1987, PODC '87.

[20]  Philip N. Klein,et al.  An O(n log n) approximation scheme for Steiner tree in planar graphs , 2009, TALG.

[21]  Mikkel Thorup,et al.  Approximate distance oracles , 2001, JACM.

[22]  Christopher M. Hartman Extremal problems in graph theory , 1997 .

[23]  David P. Dobkin,et al.  On sparse spanners of weighted graphs , 1993, Discret. Comput. Geom..

[24]  Thomas Erlebach,et al.  Length-bounded cuts and flows , 2006, TALG.

[25]  Michael Dinitz,et al.  Improved Approximation Algorithm for Steiner k-Forest with Nearly Uniform Weights , 2017, ACM Trans. Algorithms.

[26]  Michael Dinitz,et al.  Fault-tolerant spanners: better and simpler , 2011, PODC '11.

[27]  David P. Woodruff,et al.  Steiner transitive-closure spanners of low-dimensional posets , 2010, Comb..

[28]  Nikhil Srivastava,et al.  Graph sparsification by effective resistances , 2008, SIAM J. Comput..

[29]  Shiri Chechik,et al.  Compact Routing Schemes , 2016, Encyclopedia of Algorithms.

[30]  Shyamal Patel,et al.  A Trivial Yet Optimal Solution to Vertex Fault Tolerant Spanners , 2018, PODC.