Compressive Imaging Using Approximate Message Passing and a Markov-Tree Prior

We propose a novel algorithm for compressive imaging that exploits both the sparsity and persistence across scales found in the 2D wavelet transform coefficients of natural images. Like other recent works, we model wavelet structure using a hidden Markov tree (HMT) but, unlike other works, ours is based on loopy belief propagation (LBP). For LBP, we adopt a recently proposed “turbo” message passing schedule that alternates between exploitation of HMT structure and exploitation of compressive-measurement structure. For the latter, we leverage Donoho, Maleki, and Montanari's recently proposed approximate message passing (AMP) algorithm. Experiments with a large image database suggest that, relative to existing schemes, our turbo LBP approach yields state-of-the-art reconstruction performance with substantial reduction in complexity.

[1]  Robert D. Nowak,et al.  Wavelet-based statistical signal processing using hidden Markov models , 1998, IEEE Trans. Signal Process..

[2]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[3]  Richard G. Baraniuk,et al.  Wavelet-domain compressive signal reconstruction using a Hidden Markov Tree model , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[4]  Justin K. Romberg,et al.  Bayesian tree-structured image modeling using wavelet-domain hidden Markov models , 2001, IEEE Trans. Image Process..

[5]  Olgica Milenkovic,et al.  Subspace Pursuit for Compressive Sensing Signal Reconstruction , 2008, IEEE Transactions on Information Theory.

[6]  J. Boutros,et al.  Iterative multiuser joint decoding: unified framework and asymptotic analysis , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[7]  R. Koetter,et al.  Turbo equalization , 2004, IEEE Signal Processing Magazine.

[8]  William T. Freeman,et al.  Learning Low-Level Vision , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[9]  P. Laguna,et al.  Signal Processing , 2002, Yearbook of Medical Informatics.

[10]  Jung-Fu Cheng,et al.  Turbo Decoding as an Instance of Pearl's "Belief Propagation" Algorithm , 1998, IEEE J. Sel. Areas Commun..

[11]  Andrea Montanari,et al.  The dynamics of message passing on dense graphs, with applications to compressed sensing , 2010, 2010 IEEE International Symposium on Information Theory.

[12]  Andrea Montanari,et al.  Message passing algorithms for compressed sensing: I. motivation and construction , 2009, 2010 IEEE Information Theory Workshop on Information Theory (ITW 2010, Cairo).

[13]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[14]  Andrea Montanari,et al.  Message-passing algorithms for compressed sensing , 2009, Proceedings of the National Academy of Sciences.

[15]  Philip Schniter,et al.  On approximate message passing for reconstruction of non-uniformly sparse signals , 2010, Proceedings of the IEEE 2010 National Aerospace & Electronics Conference.

[16]  Lawrence Carin,et al.  Tree-Structured Compressive Sensing With Variational Bayesian Analysis , 2010, IEEE Signal Processing Letters.

[17]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[18]  Giuseppe Caire,et al.  Iterative multiuser joint decoding: Unified framework and asymptotic analysis , 2002, IEEE Trans. Inf. Theory.

[19]  William T. Freeman,et al.  Learning low-level vision , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[20]  Brendan J. Frey,et al.  A Revolution: Belief Propagation in Graphs with Cycles , 1997, NIPS.

[21]  Gregory F. Cooper,et al.  The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks , 1990, Artif. Intell..

[22]  S. Mallat A wavelet tour of signal processing , 1998 .

[23]  Daniel Kahneman,et al.  Probabilistic reasoning , 1993 .

[24]  A. Brix Bayesian Data Analysis, 2nd edn , 2005 .

[25]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[26]  W. J. Langford Statistical Methods , 1959, Nature.

[27]  J. Romberg,et al.  Imaging via Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[28]  Andrea Montanari,et al.  The dynamics of message passing on dense graphs, with applications to compressed sensing , 2010, ISIT.

[29]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[30]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[31]  Richard G. Baraniuk,et al.  Bayesian Compressive Sensing Via Belief Propagation , 2008, IEEE Transactions on Signal Processing.

[32]  Lawrence Carin,et al.  Exploiting Structure in Wavelet-Based Bayesian Compressive Sensing , 2009, IEEE Transactions on Signal Processing.

[33]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[34]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[35]  Philip Schniter,et al.  Turbo reconstruction of structured sparse signals , 2010, 2010 44th Annual Conference on Information Sciences and Systems (CISS).

[36]  Volkan Cevher,et al.  Model-Based Compressive Sensing , 2008, IEEE Transactions on Information Theory.