A Provably Componentwise Backward Stable O(n2) QR Algorithm for the Diagonalization of Colleague Matrices

eigenvalues of the so-called colleague matrix, which is a Hessenberg matrix that is the sum of a symmetric tridiagonal matrix and a rank-1 matrix. The rootfinding problem is thus reformulated as an eigenproblem, making the computation of the eigenvalues of such matrices a subject of significant practical importance. In this manuscript, we describe an O(n2) explicit structured QR algorithm for colleague matrices and prove that it is componentwise backward stable, in the sense that the backward error in the colleague matrix can be represented as relative perturbations to its components. A recent result of Noferini, Robol, and Vandebril shows that componentwise backward stability implies that the backward error δc in the vector c of Chebyshev expansion coefficients of the polynomial has the bound ‖δc‖ . ‖c‖u, where u is machine precision. Thus, the algorithm we describe has both the optimal backward error in the coefficients and the optimal cost O(n2). We illustrate the performance of the algorithm with several numerical examples.

[1]  Israel Gohberg,et al.  Efficient eigenvalue computation for quasiseparable Hermitian matrices under low rank perturbations , 2008, Numerical Algorithms.

[2]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[3]  Frann Coise Tisseur Backward Stability of the Qr Algorithm , 1996 .

[4]  Victor Y. Pan,et al.  Fast and stable QR eigenvalue algorithms for generalized companion matrices and secular equations , 2005, Numerische Mathematik.

[5]  John P. Boyd,et al.  Finding the Zeros of a Univariate Equation: Proxy Rootfinders, Chebyshev Interpolation, and the Companion Matrix , 2013, SIAM Rev..

[6]  I. Gohberg,et al.  Fast QR Eigenvalue Algorithms for Hessenberg Matrices Which Are Rank-One Perturbations of Unitary Matrices , 2007, SIAM J. Matrix Anal. Appl..

[7]  S. Barnett A companion matrix analogue for orthogonal polynomials , 1975 .

[8]  Joseph A. Ball,et al.  Recent advances in matrix and operator theory , 2008 .

[9]  I. J. Good THE COLLEAGUE MATRIX, A CHEBYSHEV ANALOGUE OF THE COMPANION MATRIX , 1961 .

[10]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[11]  J. H. Wilkinson,et al.  Practical Problems Arising in the Solution of Polynomial Equations , 1971 .

[12]  John P. Boyd,et al.  Numerical experiments on the accuracy of the Chebyshev-Frobenius companion matrix method for finding the zeros of a truncated series of Chebyshev polynomials , 2007 .

[13]  Lloyd N. Trefethen,et al.  An Extension of MATLAB to Continuous Functions and Operators , 2004, SIAM J. Sci. Comput..

[14]  A. Edelman,et al.  Polynomial roots from companion matrix eigenvalues , 1995 .

[15]  Raf Vandebril,et al.  Fast and Backward Stable Computation of Roots of Polynomials, Part II: Backward Error Analysis; Companion Matrix and Companion Pencil , 2018, SIAM J. Matrix Anal. Appl..

[16]  Paul Van Dooren,et al.  Backward Error Analysis of Polynomial Eigenvalue Problems Solved by Linearization , 2015, SIAM J. Matrix Anal. Appl..

[17]  Victor Y. Pan,et al.  Solving a Polynomial Equation: Some History and Recent Progress , 1997, SIAM Rev..

[18]  Vanni Noferini,et al.  Chebyshev rootfinding via computing eigenvalues of colleague matrices: when is it stable? , 2017, Math. Comput..

[19]  V. Rich Personal communication , 1989, Nature.

[20]  Raf Vandebril,et al.  Fast and Backward Stable Computation of Roots of Polynomials , 2015, SIAM J. Matrix Anal. Appl..

[21]  W. Specht,et al.  Die Lage der Nullstellen eines Polynoms. III , 1957 .

[22]  Leonardo Robol,et al.  Rank-structured QR for Chebyshev rootfinding , 2021, SIAM J. Matrix Anal. Appl..

[23]  Jared L. Aurentz,et al.  Core-Chasing Algorithms for the Eigenvalue Problem , 2018 .

[24]  Structured backward errors in linearizations , 2019, ArXiv.

[25]  C. T. Fike,et al.  Norms and exclusion theorems , 1960 .

[26]  C. Reinsch,et al.  Balancing a matrix for calculation of eigenvalues and eigenvectors , 1969 .

[27]  Yuji Nakatsukasa,et al.  On the stability of computing polynomial roots via confederate linearizations , 2015, Math. Comput..

[28]  Paul Van Dooren,et al.  Implicit double shift QR-algorithm for companion matrices , 2010, Numerische Mathematik.

[29]  Dario Bini,et al.  A Fast Implicit QR Eigenvalue Algorithm for Companion Matrices , 2010 .

[30]  Jianlin Xia,et al.  A Fast QR Algorithm for Companion Matrices , 2007 .

[31]  Victor Y. Pan,et al.  Numerical methods for roots of polynomials , 2007 .

[32]  R. M. Corless,et al.  Generalized Companion Matrices in the Lagrange Bases , 2004 .