Relational Evidence Theory and Interpreting Schematics

A new relational learning algorithm, the Consolidated Learning Algorithm based on Relational Evidence Theory (CLARET) is presented. Here, two different approaches to evidential learning are consolidated in how they apply to generalising within relational data structures. Attribute-based discrimination (decision trees) is integrated with part-based interpretation (graph matching) for evaluating and updating representations in spatial domains. This allows an interpretation stage to be incorporated into the generalisation process. These components of the system are demonstrated in an on-line system for the recognition of hand drawn, schematic diagrams and spatial symbols. The approach uses an adaptive representational bias and search strategy during learning by efficiently grounding the learning procedures in the relational spatial constraints of their application. It demonstrates how inductive rule generation can be constrained by domain knowledge.

[1]  Ching-Fang Liaw,et al.  A Bibliography of Heuristic Search Research Through 1992 , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[2]  E. K. WONG,et al.  Model matching in robot vision by subgraph isomorphism , 1992, Pattern Recognit..

[3]  Michael I. Jordan,et al.  Probabilistic Independence Networks for Hidden Markov Probability Models , 1997, Neural Computation.

[4]  King-Sun Fu,et al.  Handbook of pattern recognition and image processing , 1986 .

[5]  Walter F. Bischof,et al.  Rulegraphs for graph matching in pattern recognition , 1994, Pattern Recognit..

[6]  Horst Bunke,et al.  Subgraph Isomorphism Detection in Polynominal Time on Preprocessed Model Graphs , 1995, ACCV.

[7]  Adnan Amin,et al.  Learning to Recognize Hand-Printed Chinese Charaters Using Inductive Logic Programming , 1996, Int. J. Pattern Recognit. Artif. Intell..

[8]  Julian R. Ullmann,et al.  An Algorithm for Subgraph Isomorphism , 1976, J. ACM.

[9]  Ramakant Nevatia,et al.  Recognizing 3-D Objects Using Surface Descriptions , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Stephen Muggleton,et al.  Machine Invention of First Order Predicates by Inverting Resolution , 1988, ML.

[11]  Jan van Leeuwen,et al.  Worst-case Analysis of Set Union Algorithms , 1984, JACM.

[12]  Ming Li,et al.  Inductive Reasoning and Kolmogorov Complexity , 1992, J. Comput. Syst. Sci..

[13]  Walter F. Bischof,et al.  Learning structural descriptions of patterns: A new technique for conditional clustering and rule generation , 1994, Pattern Recognit..

[14]  Harry G. Barrow,et al.  Subgraph Isomorphism, Matching Relational Structures and Maximal Cliques , 1976, Inf. Process. Lett..

[15]  Anil K. Jain,et al.  3D object recognition using invariant feature indexing of interpretation tables , 1992, CVGIP Image Underst..

[16]  J. Rissanen A UNIVERSAL PRIOR FOR INTEGERS AND ESTIMATION BY MINIMUM DESCRIPTION LENGTH , 1983 .

[17]  Robert C. Bolles,et al.  3DPO: A Three- Dimensional Part Orientation System , 1986, IJCAI.

[18]  Robert E. Tarjan,et al.  Finding a Maximum Independent Set , 1976, SIAM J. Comput..

[19]  Ivan Bratko,et al.  Applications of inductive logic programming , 1995, SGAR.

[20]  Michael Zyda,et al.  Virtual Reality: In the Mind of the Beholder - Guest Editors' Introduction , 1995, Computer.

[21]  Chinmoy B. Bose,et al.  Connected and degraded text recognition using hidden Markov model , 1994, Pattern Recognit..

[22]  Michael J. Pazzani,et al.  A Knowledge-intensive Approach to Learning Relational Concepts , 1991, ML.

[23]  K. Boyer,et al.  Organizing Large Structural Modelbases , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Robert E. Tarjan,et al.  Efficiency of a Good But Not Linear Set Union Algorithm , 1972, JACM.

[25]  Nils J. Nilsson,et al.  Problem-solving methods in artificial intelligence , 1971, McGraw-Hill computer science series.

[26]  Theodosios Pavlidis,et al.  A Shape Analysis Model with Applications to a Character Recognition System , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Paul L. Rosin Representing curves at their natural scales , 1992, Pattern Recognit..

[28]  Horst Bunke Attributed Programmed Graph Grammars and Their Application to Schematic Diagram Interpretation , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Farzin Mokhtarian,et al.  A Theory of Multiscale, Curvature-Based Shape Representation for Planar Curves , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Michel Goossens,et al.  The LaTeX companion , 1993 .

[31]  Robert M. Haralick,et al.  Structural Descriptions and Inexact Matching , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Ching Y. Suen,et al.  Hierarchical attributed graph representation and recognition of handwritten chinese characters , 1991, Pattern Recognit..

[33]  Ramakant Nevatia,et al.  Using Perceptual Organization to Extract 3-D Structures , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[35]  Ryszard S. Michalski,et al.  Automated Construction of Classifications: Conceptual Clustering Versus Numerical Taxonomy , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Michael J. Pazzani,et al.  Exploring the Decision Forest: An Empirical Investigation of Occam's Razor in Decision Tree Induction , 1993, J. Artif. Intell. Res..

[37]  William Grimson,et al.  Object recognition by computer - the role of geometric constraints , 1991 .

[38]  Geoff A. W. West,et al.  Nonparametric Segmentation of Curves into Various Representations , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Jin Hyung Kim,et al.  Translation-, Rotation- and Scale- Invariant Recognition of Hand-Drawn Symbols in Schematic Diagrams , 1990, Int. J. Pattern Recognit. Artif. Intell..

[40]  Ching Y. Suen,et al.  Historical review of OCR research and development , 1992, Proc. IEEE.

[41]  Robert M. Haralick,et al.  A Metric for Comparing Relational Descriptions , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[43]  Patrick J. Flynn Saliencies and symmetries: toward 3D object recognition from large model databases , 1992, CVPR.

[44]  Horst Bunke,et al.  Automatic Learning and Recognition of Graphical Symbols in Engineering Drawings , 1995, GREC.

[45]  Yannis A. Dimitriadis,et al.  Towards an art based mathematical editor, that uses on-line handwritten symbol recognition , 1995, Pattern Recognit..

[46]  Walter F. Bischof,et al.  Learing How to Find Patterns of Objects in Complex Scenes , 1995, ICIAP.

[47]  Martin A. Fischler,et al.  The Representation and Matching of Pictorial Structures , 1973, IEEE Transactions on Computers.

[48]  Takeo Kanade,et al.  Automatic generation of object recognition programs , 1988, Proc. IEEE.

[49]  Roger Mohr,et al.  Mirabelle, a system for structural analysis of drawings , 1983, Pattern Recognit..

[50]  David G. Lowe,et al.  Three-Dimensional Object Recognition from Single Two-Dimensional Images , 1987, Artif. Intell..

[51]  Réjean Plamondon,et al.  Handwriting processing and recognition , 1993, Pattern Recognit..

[52]  Sankar K. Pal,et al.  A review on image segmentation techniques , 1993, Pattern Recognit..